• 제목/요약/키워드: Fatigue Cracking

Search Result 255, Processing Time 0.021 seconds

Evaluation of the Permanent Deformation Behavior on Geosynthetics-Reinforced Asphalt Pavement by using the Wheel Tracking Tests (휠트래킹 시험을 통한 토목섬유시트 보강 아스팔트포장의 소성변형 거동특성 평가)

  • Cho, Sam-Deok;Lee, Dae-Young;Kim, Jin-Hwan;Kim, Nam-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.2 no.3
    • /
    • pp.39-46
    • /
    • 2003
  • The major pavement distress types found in the domestic roadways include rutting, fatigue cracking, and reflection cracking which are results of the environment and repeated traffic loads. These distresses usually occur before pavements approach their design life, and therefore, a significant amount of national budget is spent for maintenance of roadway pavements. The purpose of this study is to establish a geosynthetics-asphalt pavement system. For the study, wheel tracking tests are conducted to analyze the controlling effect of geosynthetics on rutting of asphalt pavement. On the basis of these works, the reinforcement effect of geosynthetics on the rutting of the asphalt pavement is clarified and deformation characteristics of geosynthetics-asphalt mixture is examined.

  • PDF

Static and Fatigue Behavior of RC Beams Strengthened with Steel Plates

  • Oh, Byung-Hwan;Cho, Jae-Yeol;Cha, Soo-Won
    • KCI Concrete Journal
    • /
    • v.14 no.1
    • /
    • pp.51-60
    • /
    • 2002
  • Strengthening of existing concrete structures is a major concern in recent years as the number of degraded structures increases. The purpose of this paper is to investigate the static and fatigue behavior of reinforced concrete (RC) beams strengthened with steel plates. To this end, a comprehensive test program has been set up and many series of strengthened beams have been tested. The major test variables include the plate thickness, adhesive thickness, and the shear-span to depth ratio. The test results indicate that the separation of plates is the dominant failure mechanism even for the full-span-length strengthened beams with steel plate. The theoretical ultimate load capacities for strengthened beams based on the full composite action of concrete beam and steel plate are found to be larger than the actual measured load capacities. The strengthened beams exhibit more dominant shear cracking as the shear-span to depth ratio decreases. The ultimate capacity of strengthened beams increases slightly with the increase of adhesive thickness, which may be caused by the late initiation of plate separation in the beams with thicker adhesive. A realistic concept of ductility for plate-strengthened beams is proposed in this study. It is seen that the strengthened beams show relatively low ductility compared with unstrengthened beams. The present study indicates that the strengthened beams exhibit much higher fatigue resistance than the unstrengthened beams. The increase of deflections of strengthened beams according to the number of load cycles is much smaller than that of unstrengthened beams. The present study provides very useful results for the realistic application of plate-strengthening method in reinforced concrete structures.

  • PDF

Fatigue Resistance of Fiber-Reinforced Asphalt Concrete in Flexible Pavement (연성포장용 섬유보강 아스팔트 콘크리트의 피로저항성)

  • Kim, Nak-Seok;Choo, Sang-Hyuk;Lee, Suck-Hong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.3 s.6
    • /
    • pp.79-88
    • /
    • 2002
  • The main purpose of this paper is to evaluate the possibility of improvement in fatigue resistance of asphalt concrete mixture using the industrial waste material of K fiber. In this research, as an experimental equipment, the MTS with Closed-Loop Servohydraulic System was used and it was designed according to the U.S. standard testing procedure of ASTM D 4123. According to the test results, the optimum content of fiber with the length of 8mm was about 0.2 percent of total mixture weight. The optimum asphalt content for the fiber-reinforced asphalt concrete was about 5.5 percent of total mixture weight. Fatigue resistance of fiber-reinforced asphalt concrete was noticeable compared to the conventional dense-graded 20 asphalt concrete. In addition, the resilient moduli of fiber-reinforced asphalt mixture were $1.15{\sim}1.18$ times higher than those of conventional asphalt concrete.

Failure Criteria of a 6-Inch Carbon Steel Pipe Elbow According to Deformation Angle Measurement Positions (변형각의 측정 위치에 따른 6인치 탄소강관엘보의 파괴 기준)

  • Yun, Da Woon;Jeon, Bub Gyu;Chang, Sung Jin;Park, Dong Uk;Kim, Sung Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.13-22
    • /
    • 2022
  • This study proposes a low-cycle fatigue life derived from measurement points on pipe elbows, which are components that are vulnerable to seismic load in the interface piping systems of nuclear power plants that use seismic isolation systems. In order to quantitatively define limit states regarding leakage, i.e., actual failure caused by low-cycle fatigue, in-plane cyclic loading tests were performed using a sine wave of constant amplitude. The test specimens consisted of SCH40 6-inch carbon steel pipe elbows and straight pipes, and an image processing method was used to measure the nonlinear behavior of the test specimens. The leakage lines caused by low-cycle fatigue and the low-cycle fatigue curves were compared and analyzed using the relationship between the relative deformation angles, which were measured based on each of the measurement points on the straight pipe, and the moment, which was measured at the center of the pipe elbow. Damage indices based on the combination of ductility and dissipation energy at each measurement point were used to quantitatively express the time at which leakage occurs due to through-wall cracking in the pipe elbow.

Laboratory Performance Evaluation of Chemcrete Modified Asphalt Mixtures (켐크리트 개질 아스팔트 혼합물의 실내 공용성 평가)

  • Park, Kyung-Il;Lee, Hyun-Jong;Lee, Kwang-Ho;Rhee, Suk-Keun
    • International Journal of Highway Engineering
    • /
    • v.3 no.3 s.9
    • /
    • pp.119-133
    • /
    • 2001
  • The stiffness of chemcrete modified asphalt mixtures increase rapidly with time in the presence f oxygen and high temperature, Sometimes the asphalt pavements that have chemcrete modified asphalt mixture applied on the surface none show premature cracking because of the excessive increase in the stiffness f the asphalt mixtures. To mitigate this premature cracking, the chemcrete modified mixtures have been used as a base course material. In this study, the performance of the chemcrete modified asphalt binder and mixtures are investigated through a course of various laboratory tests including dynamic shear rheometer and bending beam rheometer tests for binders and uniaxial tensile fatigue, wheel tracking, and moisture damage tests for the mixtures. And also the resilient modulus of the conventional and chemcrete modified mixtures are compared based on the test results conducted on the specimens obtained from various in-situ test sections. It can be concluded from the tests results that the chemcrete modified mixtures show better rutting resistance than conventional mixtures. The chemcrete modified mixtures may have low temperature cracking when it is applied in the cold region. The stiffness of chemcrete modified mixtures is approximately 50 percent higher than that of conventional mixtures more than two years after the chemcrete modified mixture was applied in the base course.

  • PDF

Consideration of Methods Evaluating the Growing Process of Stress Corrosion Cracking of the Sensitized 18-8 Austenitic Stainless Steel in High Temperature Water Based on Electric Circuit Theory: The Effects of Stress Factors

  • Tsukaue, Yasoji
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.103-111
    • /
    • 2007
  • The effect of stress factors on the growing process of stress corrosion cracking (SCC) of the sensitized 18-8 stainless steel in high temperature water was investigated using equations of crack growth rate derived from applying electric circuits to SCC corrosion paths. Three kinds of cross sections have to be considered when electric circuit is constructed using total current. The first is ion flow passage area, $S_{sol}$, of solution in crack, the second is total dissolving surface area, $S_{dis}$, of metal on electrode of crack tip and the third is dissolving cross section, $S_{met}$, of metal on grain boundary or in base metal or in welding metal. Stress may affect each area. $S_{sol}$ may depend on applied stress, $\sigma_{\infty}$, related with crack depth. $S_{dis}$ is expressed using a factor of $\varepsilon(K)$ and may depend on stress intensity factor, K only. SCC crack growth rate is ordinarily estimated using a variable of K only as stress factor. However it may be expected that SCC crack growth rate depends on both applied stress $\sigma_{\infty}$ and K or both crack depth and K from this consideration.$\varepsilon(K)$ is expressed as ${\varepsilon}(K)=h_2{\cdot}K^2+h_3{\cdot}K^3$ when $h_{2}$ and $h_{3}$ are coefficients. Also, relationships between SCC crack growth rate, da/dt and K were simulated and compared with the literature data of JBWR-VIP-04, NRC NUREG-0313 Rev.2 and SKIFS Draft. It was pointed out in CT test that the difference of distance between a point of application of force and the end of starter notch (starting point of fatigue crack) may be important to estimate SCC crack growth rate. An anode dissolution current density was quantitatively evaluated using a derived equation.

A Case Study for the Estimation of Remaining Lives of Asphalt Pavements (아스팔트포장 잔존수명 예측 사례 연구)

  • Lee, Jung-Hun;Lee, Hyun-Jong;Park, Hee-Mun;Kim, In-Tai
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.1-13
    • /
    • 2008
  • This study presents a case study of condition evaluation of various asphalt pavement sections to estimate performance lives. The pavement surface conditions including cracking and rutting are first evaluated using a automatic pavement analyzer, ARAN. HPCI(Highway Pavement Condition Index) values are estimated using the pavement surface distress data. It is observed from the pavement distress survey that the major distress type of the sections is top-down cracking. The modulus value of each pavement layer is back-calculated from the defection data obtained from a FWD(Falling Weight Deflectometer) and compared with the laboratory measured dynamic modulus values. Remaining lives of the various pavement sections are estimated based on a mechanistic-empirical approach and AAHTO 1993 design guide. The structural capacities of the all pavement sections based on the two approaches are strong enough to maintain the pavement sections for the rest of design life. Since the major distress type is top-down cracking, the remaining lives of the pavement sections are estimated based on HPCI and existing performance database of highway pavements. To evaluate the causes of premature pavement distress, various material properties, such as air void, asphalt binder content, aggregate gradation, dynamic modulus and fatigue resistance, are measured from the field cores. It is impossible to accurately estimate the binder contents of field samples using the ignition method. It is concluded from the laboratory tests that the premature top down cracking is mainly due to insufficient compaction and inadequate aggregate gradation.

  • PDF

Interfacial degradation of thermal barrier coatings in isothermal and cyclic oxidation test

  • Jeon, Seol;Lee, Heesoo;Choi, Youngkue;Shin, Hyun-Gyoo;Jeong, Young-Keun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.4
    • /
    • pp.151-157
    • /
    • 2014
  • The degradation mechanisms of thermal barrier coatings (TBCs) were investigated in different thermal fatigue condition in terms of microstructural analyses. The isothermal and cyclic oxidation tests were conducted to atmospheric plasma sprayed-TBCs on NIMONIC 263 substrates. The delamination occurred by the oxide layer formation at the interface, the Ni/Cr-based oxide was formed after Al-based oxide layer grew up to ${\sim}10{\mu}m$ in the isothermal condition. In the cyclic oxidation with dwell time, the failure occurred earlier (500 hr) than in the isothermal oxidation (900 hr) at same temperature. The thickness of Al-based oxide layer of the delaminated specimen in the cyclic condition was ${\sim}4{\mu}m$ and the interfacial cracks were observed. The acoustic emission method revealed that the cracks generated during the cooling step. It was considered that the specimens were prevented from the formation of the Al-based oxide by cooling treatment, and the degradation mode in the cyclic test was dominantly interfacial cracking by the difference of thermal expansion coefficients of the coating layers.

Reliability Analysis of Steel Fiber Reinforced Concrete Beams (강섬유 보강 철근콘크리트보의 신뢰성 해석)

  • 유한신;곽계환;장화섭
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.479-486
    • /
    • 2004
  • The purpose of this study is to practical use with increase safety, usablility and economical. In this study, the property of fatigue behavior was tested by comparing reinforced concrete and steel fiber reinforced concrete. The basic test, the static test and fatigue test were used as the research methods. Basic on the test, the material compressive strength test and split tensile strength test ware conducted 7 days and 28 days after the concrete was poured. In the static test, there ware four types of experimental variables of the steel fiber mixing ratio : 0.00%, 0.75%, 1.00%, and 1.25%. The ultimate load initial diagonal tension crack, and initial load of flexural cracking were all observed by static test. A methodology for the probabilistic assement of steel fiber reinforced concrete(SFRC) which takes into account material variability, confinement model uncertainty and the uncertainty in local and globa failure criteria is applied for the derivation of vulnerability curves for the serviceability and ultimate limit states, the reliability of SFRC using the proposed practical linear limit state model is evaluated by using the AFOSM(Advanced First Order Second Moment) method and MCS(monte-Calrosimulation) method.

  • PDF

Study on the Effect of Crystal Morphology on Mechanical Property in Cu-Zn-Al Shape Memory Alloy (Cu-Zn-Al 형상기억합금에서 기계적 성질에 미치는 결정형상의 영향에 관한 연구;주조조직과 재결정처리에 따른 기계적 성질과 형상기억능의 변화)

  • Hwang, Sung-Jun;Lee, Jin-Hyung;Hong, Jong-Hwi
    • Journal of Korea Foundry Society
    • /
    • v.9 no.1
    • /
    • pp.58-66
    • /
    • 1989
  • The effect of heat treating temperature and ${\alpha}$ phase In the ${\beta}$ phase matrix were investigated for ${\beta}-CuZnAl$ shape memory alloys by tension test, fatigue test, and shape memory effect test. After heat treatment at $677^{\circ}C$, $750^{\circ}C$, $800^{\circ}C$ and $850^{\circ}C$ for 10 min. respectively, static fracture stress(${\sigma}_f$), fatigue fracture stress(${\tau}_{max}$) at $10^6$ cycle, and elongation(${\epsilon}_f$) was $24.2kg/mm^2$, $17.21kg/mm^2$ and 11.8%, respectively. As heat treating temperature decreased, fracture surfaces of the specimens were changed from the intergranular to the transgranular fracture mode. Especially, the a phase precipitated in the ${\beta}$ phase matrix had an effect on crack propagation and the fracture surface was characterized by dimple-like pattern when crack propagated in transgranular cracking mode. Precipitation of the ${\alpha}$ phase in the ${\beta}$ phase matrix lowered the transformation temperature by $10^{\circ}C$, and about 2.5 vol.% ${\alpha}$ phase did not affect the shape memory effect examined by the bending test.

  • PDF