• Title/Summary/Keyword: Fast tool servo

Search Result 40, Processing Time 0.024 seconds

Development of Error Compensation System and On the Machine Measurement System for Ultra-Precision Machine (초정밀가공기용 오차보상시스템 및 기상측정장치 개발)

  • 이대희;나혁민;오창진;김호상;민흥기;김민기;임경진;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.599-603
    • /
    • 2003
  • This paper present an error compensation system and On-Machine Measurement(OMM) system for improving the machining accuracy of ultra-precision lathe. The Fast-Tool-Servo(FTS) driven by a piezoelectric actuator is applied for error compensation system. The controller is implemented on the 32bit DSP for feedback control of piezoelectric actuator. The control system is designed to compensates three kinds of machining errors such as the straightness error of X-axis slide, the thermal growth error of the spindle. and the squareness between spindle and X-axis slide. OMM is preposed to measure the finished profile of workpiece on the machine-tool using capacitive sensor with highly accurate ruby tip probe guided by air bearing. The data acquisition system is linked to the CNC controller to get the position of each axis in real-time. Through the experiments, it is founded that the thermal growth of spindle and tile squareness error between spindle and X-axis slide influenced to machining error more than straightness error of X-axis slide in small travel length. These errors were simulated as a sinusoidal signal which has very low frequency and the FTS could compensate the signal less than 30 m. The implemented OMM system has been tested by measuring flat surface of 50 mm diameter and shows measurement error less than 400 mm

  • PDF

CNC Implemented Fault Diagnosis and Remote-Service System (CNC에 실장한 고장진단 및 원격 서비스 시스템)

  • 김선호;김동훈;김도연;박영우;윤원수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.89-97
    • /
    • 2003
  • The faults diagnosis of machine tool, which is controlled by CNC(Computer Numerical Control) and PLC(Programmable Logic Controller), is generally based on ladder diagram of PLC because sequential controls for CNC and servo motor are mostly processed in PLC. However, when fault is occurred, a searching of logical relationship for fault reasons is required a lot of diagnosis experiences and times because PLC program has step structure. In this paper, FDS(Fault Diagnosis System) is developed and implemented to machine tool with open architecture controller in order to find the reason of fault fast and correctly. The diagnosed reasons for fault are remote serviced on web through developed RSS(Remote Service System). The operationability and usefulness of developed system are evaluated on specially manufactured machine tool with open architecture CNC. The results of this research can be the model of remote monitoring and fault diagnosis system of machine tool with open architecture CNC.

The Improvement of Machining Accuracy and Compensation of Feeding Error in CNC Lathe Using Ultra Precision Fast Tool (초정밀 FTS 시스템을 이용한 CNC Lathe 스핀들 이송오차 보상 및 가공정밀도 향상)

  • Kim, Jae-Yeol;Kwak, Nam-Su
    • Tribology and Lubricants
    • /
    • v.27 no.1
    • /
    • pp.13-18
    • /
    • 2011
  • The ultra-precision products which recently experienced high in demands had included the large areas of most updated technologies, for example, the semiconductor, the computer, the aerospace, the media information, the precision machining. For early 21st century, it was expected that the ultra-precision technologies would be distributed more throughout the market and required securing more nation-wise advancements. Furthermore, there seemed to be increasing in demand of the single crystal diamond tool which was capable of the ultra-precision machining for parts requiring a high degree of complicated details which were more than just simple wrapping and policing. Moreover, the highest degree of precision is currently at 50 nm for some precision parts but not in all. The machining system and technology should be at very high performed level in order to accomplish this degree of the ultra-precision.

Core Technologies of Next-generation Machine Tools

  • Lee, Jae-yoon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.61-70
    • /
    • 2000
  • This paper described the current status of machine tool technology and its future trends with a particular emphasis on high-speed machining. People in machine tool industry have continuously sought to serve fast-changing manufacturing industry with economical machining solutins. At presents, it appears that more productivity gain is demanded to shorten time-to-market and machining requirements become more stringent. In this regard, this paper firstly addressed a high-speed spindle as a key element for the next-generation machine tools. The sequel to it apparently went to high-speed feed axes and final discussion included the problem of how to optimize overall system including servo function. Lastly a brief look to NC technology including machine intelligence was taken.

  • PDF

The conceptual design of the x y $\theta$ fine stage and its optimal design to obtain fast response in lithography system.

  • Kim, Dong-Min;Kim, Ki-Hyun;Lee, Sung-Q.;Gweon, Dae-Gab
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.37.3-37
    • /
    • 2001
  • The quality of a precision product, in genera, relies on the accuracy and precision of its manufacturing and inspection process. In many cases, the level of precision in the manufacturing and inspection system is also dependent on the positioning capability of tool with respect to the workpiece in the process. Recently the positioning accuracy level employed for some of precision product has reached the level of submicron and long range of motion is required. For example, for 1GDRM lithography, 20nm accuracy and 300nm stroke needs. This paper refers to the lithography stage especially fine stage. In this study, for long stroke and high accuracy, the dual servo system is proposed. For the coarse actuator, LDM(Linear DC Noter) is used and for fine or VCM is used ...

  • PDF

Local Obstacle Avoidance of an Indoor Mobile Robot Using Lane Method and Velocity Space Command Approach (차선방법과 속도공간 명령 방식을 이용한 실내 주행 로봇의 지역 장애물 회피)

  • 김성철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.105-110
    • /
    • 1999
  • This paper presents a local obstacle avoidance method for indoor mobile robots using Lane method and velocity Space Command approach. The method locates local obstacles using the information form multi-sensors, such that ultrasonic sensor array and laser scanning sensor. The method uses lane method to determine optimum collision-free heading direction of a robot. Also, it deals with the robot motion dynamics problem to reduce some vibration and guarantee fast movement as well. It yields translational and rotational velocities required to avoid the detected obstacles and to keep the robot heading direction toward goal location as close as possible. For experimental verification of the method, a mobile robot driven by two AC servo motors, equipped with 24 ultrasonic sensor array and laser scanning sensor navigates using the method through a corridor cluttered with obstacle.

  • PDF

A Study on the Position Control of Permanent Magnet Sychronous Motor using the State Observer (상태관측기에 의한 영구자석동기전동기의 위치제어에 관한 연구)

  • Cho, Kwang-Seung;Park, Sung-Won;Moon, Baek-Young;Shin, Dong-Ryul;Woo, Jung-In
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.378-380
    • /
    • 2000
  • According to the rapid growth of high speed and precise industry the application of synchronous motor has been increased. In the application fields, the fast dynamic response is of prime importance. In particular, since the PMSM has characteristics of high speed, high thrust, it has used in high-performance servo drive. From these reasons, it is recently used for high precise position control, and machine tool. In this paper, using the state observer, robust vector position control method for the purpose of improving the system performance deterioration caused by parameter variations is proposed.

  • PDF

Discretization Effects of Real-Time Input Shaping in Residual Vibration Reduction for Precise XY Stage (정밀 XY 스테이지 잔류진동 억제를 위한 실시간 입력성형에서의 이산화 효과에 관한 연구)

  • Park, Sang-Won;Choi, Hun-Seok;Singhose, William;Hong, Seong-Wook
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.71-78
    • /
    • 2007
  • Input shaping is known to be a very effective tool for suppressing residual vibration without introducing any complicated sensors and feedback control. Real-time input shaping schemes necessitate a process such that the input command is discretized to deal with non-prescribed, real-time input. Thus parameters associated with input command discretization, such as time spacing and duration time, are unknowns which affect the performance of input shaping schemes, especially for small and fast XY stages. This paper investigates the effects of input command discretization parameters, such as time spacing and duration time, on the dynamic performance of XY stages subjected to real-time input shaping. An experimental system is developed which is equipped with an XY stage driven by servo-motors and real-time user command. Experiments are performed to investigate the dynamic performance of XY stage by changing these parameters and to yield a strategy to gain better performance.

A Study on the Sliding Mode Control of PMLSM using the Slate Observer (상태관측기에 의한 영구자석 선형동기전동기의 슬라이딩모드제어에 관한 연구)

  • 황영민;신동률;최거승;조윤현;우정인
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.2
    • /
    • pp.71-80
    • /
    • 2002
  • According to the rapid growth of high speed and precise industry, the application of synchronous motor has been increased. In the application fields, these fast dynamic response is of prime importance. In particular, since the PMLSM(Permanent Magnet Linear Synchronous Motor) has characteristics of high speed, high thrust, it has been used in high-performance servo drive. From these reasons, it is recently used for high precise position control, and machine tool. In this paper, a study of the sliding mode with VSS (Variable Structure System) design for a PMLSM is presented. For fast and precise motion control of PMLSM, the compensation of disturbance and parameter variation is necessary. Hence we eliminate the reaching phase use of VSS that is changed to switching function and vector control using the state observer. And we proposed to sliding mode control algorithm so that realize fast response without overshoot, disturbance and parameter variation.

Design and Construction of a Surface Encoder with Dual Sine-Grids

  • Kimura, Akihide;Gao, Wei;Kiyono, Satoshi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.20-25
    • /
    • 2007
  • This paper describes a second-generation dual sine-grid surface encoder for 2-D position measurements. The surface encoder consisted of a 2-D grid with a 2-D sinusoidal pattern on its surface, and a 2-D angle sensor that detected the 2-D profile of the surface grid The 2-D angle sensor design of previously developed first-generation surface encoders was based on geometric optics. To improve the resolution of the surface encoder, we fabricated a 2-D sine-grid with a pitch of $10{\mu}m$. We also established a new optical model for the second-generation surface encoder that utilizes diffraction and interference to generate its measured values. The 2-D sine-grid was fabricated on a workpiece by an ultra precision lathe with the assistance of a fast tool servo. We then performed a UV-casting process to imprint the sine-grid on a transparent plastic film and constructed an experimental setup to realize the second-generation surface encoder. We conducted tests that demonstrated the feasibility of the proposed surface encoder model.