• Title/Summary/Keyword: Fast current control

Search Result 426, Processing Time 0.03 seconds

A Bidirectional Single-Stage DC/AC Converter for Grid Connected Energy Storage Systems

  • Chen, Jianliang;Liao, Xiaozhong;Sha, Deshang
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1026-1034
    • /
    • 2015
  • In this paper, a unified control strategy using the current space vector modulation (CSVM) technique is proposed and applied to a bidirectional three-phase DC/AC converter. The operation of the converter changes with the direction of the power flow. In the charging mode, it works as a buck type rectifier; and during the discharging mode, it operates as a boost type inverter, which makes it suitable as an interface between high voltage AC grids and low voltage energy storage devices. This topology has the following advantages: high conversion efficiency, high power factor at the grid side, tight control of the charging current and fast transition between the charging and discharging modes. The operating principle of the mode analysis, the gate signal generation, the general control strategy and the transition from a constant current (CC) to a constant voltage (CV) in the charging mode are discussed. The proposed control strategy has been validated by simulations and experimental results obtained with a 1kW laboratory prototype using supercapacitors as an energy storage device.

NONLINEAR OUTPUT VOLTAGE CONTROLOF PWM DC-DC CONBERTERS BY FEEDBACK LINERIZATION

  • Jo, Byeong-Rim;Min, Byung-Hoon;Choi, Hang-June
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.223-226
    • /
    • 1995
  • New output voltage control technique based on the simple feedback linearization is proposed. The system states are first divided into fast states and slow states. Then, the control stage is composed of the fast inner current control loop and the slow outer voltage control loop. From the inner loop, the average control is derived by the sliding mode concept and it is inserted into the dynamic equations of the slow states in the outer loop. Applying the feedback linearization technique to the obtained large-signal models of the PWM dc-dc converters, linearized large-signal models are obtained for the slow states. With this technique, the output voltage controller of the PWM dc-dc converters can be designed easily in the global state space and its control performance can also be much improved.

  • PDF

A Novel Digital Control for Active Power Filter (능동 전력 필터를 위한 새로운 디지탈 제어)

  • Song, E.H.;Kwon, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1081-1087
    • /
    • 1992
  • A novel digital control algorithms are developed for an active power filter (APF) using a pulse-width modulated (PWM) rectifier with current link. A main control algorithm compensating both the reactive power and harmonic currents with fast dynamic response is derived through a vector approach. A space vector modulation technique is developed for the PWM rectifier in order to generate the desired current vector of the APF. The system generates no acoustic noise and it is implemented with a minimal control hardware structure using the Intel 80196 single-chip microcomputer. Experimental results show that the proposed scheme gives good dynamic and static performance for the APF system.

  • PDF

THE EFFECTIVE VOLTAGE CONTROL SCHEME OF THE INVERTER FOR A STATIC POWER SUPPLY

  • Kim, Byoungjin;Song, Youngsin;Ji, Myoungku;Lee, Jongha;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.336-340
    • /
    • 1998
  • In this paper, an effective control scheme of a single phase UPS inverter is proposed to have no steady state error of the output voltage and the fast response for the load request. The cosine wave tranfer function is proposed to control the output voltage. This controller clearly removes errors of magnitude and phase both in the steady state. On the other hand, a current controller is proposed to reduce the transient time of the voltage control and to improve the bad distorted factor of the output voltage waveform by the load fluctuation and the presences of nonlinear parameters in the plant. The current controller is designed parallel to the voltage controller and performs separately from it.

  • PDF

멀티레벨 전압형 인버터를 사용한 무효전력보상장치

  • Min, Wan-Gi;Kim, Byeong-Cheol;Jeon, Hyeong-Seok;Kim, Hyeong-Gon;Sin, Seok-Du;Jang, Seong-Nam;Lee, Gwang-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1999.07h
    • /
    • pp.21-25
    • /
    • 1999
  • This paper proposes a novel control strategy of SVC(Static var compensator) using cascade multilevel inverter. To control the reactive power instantaneously, the dq-dynamic system model is described and analyzed. A single pulse pattern based on the SHE(Selective Harmonic Elimination) technique is determined from the look-up table to reduce the line current harmonics and a rotating fundamental frequency switching scheme is applied to adjust the DC capacitor voltage at the scheme level. From the simulation, it is verified that this proposed control scheme make the dynamic control response of SVC fast, the current harmonics low, and the DC capacitor voltage balanced.

  • PDF

Observer-Based FL-SMC Active Damping for Back-to-Back PWM Converter with LCL Grid Filter

  • Gwon, Jin-Su;Lee, Hansoo;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.200-207
    • /
    • 2015
  • This paper proposes an active damping control method for a grid-side converter that has an LCL grid filter in the back-to-back converter. To remove the resonant frequency components produced by the LCL filter, it is necessary to measure the grid current. To do this, sensors must be added. However, it is not necessary to add sensors because the grid current is estimated by designing a suboptimal observer. In order to remove the nonlinearity and to gain fast response of control, both feedback linearization and sliding mode control are applied. The proposed method is verified through a simulation.

On the equivalence of reaction rate in energy collapsing of fast reactor code SARAX

  • Xiao, Bowen;Wei, Linfang;Zheng, Youqi;Zhang, Bin;Wu, Hongchun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.732-740
    • /
    • 2021
  • Scattering resonance of medium mass nuclides leads complex spectrum in the fast reactor, which requires thousands of energy groups in the spectrum calculation. When the broad-group cross sections are collapsed, reaction rate cannot be completely conserved. To eliminate the error from energy collapsing, the Super-homogenization method in energy collapsing (ESPH) was employed in the fast reactor code SARAX. An ESPH factor was derived based on the ESPH-corrected SN transport equation. By applying the factor in problems with reflective boundary condition, both the effective multiplication factor and reaction rate were conserved. The fixed-source iteration was used to ensure the stability of ESPH iteration. However, in the energy collapsing process of SARAX, the vacuum boundary condition was adopted, which was necessary for fast reactors with strong heterogeneity. To further reduce the error caused by leakage, an additional conservation factor was proposed to correct the neutron current in energy collapsing. To evaluate the performance of ESPH with conservation factor, numerical benchmarks of fast reactors were calculated. The results of broad-group calculation agreed well with the direct full-core Monte-Carlo calculation, including the effective multiplication factor, radial power distribution, total control rod worth and sodium void worth.

A design of fast switching time, low phase noise PHS frequency synthesizer (빠른 스위칭 시간과 저 위상잡음 특성을 가지는 PHS용 주파수 합성기의 설계)

  • Jung, Sung-Kyu;Jung, Ji-Hoon;Pu, Young-Gun;Kim, Jin-Kyung;Jang, Suk-Hwan;Lee, Kang-Yoon
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.499-500
    • /
    • 2006
  • This paper presents a fast switching CMOS frequency synthesizer with a new coarse tuning method for PHS applications. To achieve the fast lock-time and the low phase noise performance, an efficient bandwidth control scheme is proposed. Charge pump up/down current mismatches are compensated with the current mismatch compensation block. Also, the proposed coarse tuning method selects the optimal tuning capacitances of the LC-VCO to optimize the phase noise and the lock-time. The measured lock-time is about $20{\mu}s$. This chip is fabricated with $0.25{\mu}m$ CMOS technology, and the die area is $0.7mm{\times}2.1mm$. The power consumption is 54mW at 2.7V supply voltage.

  • PDF

Fast-Transient Digital LDO Regulator With Binary-Weighted Current Control (이진 가중치 전류 제어 기법을 이용한 고속 응답 디지털 LDO 레귤레이터)

  • Woo, Ki-Chan;Sim, Jae-Hyeon;Kim, Tae-Woo;Hwang, Seon-Kwang;Yang, Byung-Do
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1154-1162
    • /
    • 2016
  • This paper proposes a fast-transient digital LDO(Low dropout) regulator with binary-weighted current control technique. Conventional digital LDO takes a long time to stabilize the output voltage, because it controls the amount of current step by step, thus ringing problem is generated. Binary-weighted current control technique rapidly stabilizes output voltage by removing the ringing problem. When output voltage reliably reaches the target voltage, It added the FRZ mode(Freeze) to stop the operation of digital LDO. The proposed fast response digital LDO is used with a slow response DC-DC converter in the system which rapidly changes output voltage. The proposed digital controller circuit area was reduced by 56% compared to conventional bidirectional shift register, and the ripple voltage was reduced by 87%. A chip was implemented with a $0.18{\mu}F$ CMOS process. The settling time is $3.1{\mu}F$ and the voltage ripple is 6.2mV when $1{\mu}F$ output capacitor is used.

Current Control of Voltage Source Inverter (전압원 인버터의 전류제어)

  • Ma, J.S.;Youn, H.S.;Im, S.W.;Goo, B.H.;Kwon, W.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.328-332
    • /
    • 1996
  • Current controlled inverter is the device which gives fast and accurate current output response for current command Existing current controlled inverters have no way but to take a narrow bandwidth due to resonance of output filter. In this paper, High performance current controlled inverter with multiloop structure is designed and modeling is executed in that basis. This paper realizes the high performance current controlled inverter with the bandwidth above resonant frequency, controls proposed inverter by analog controller, analyzes the performances through simulation and tests 2kW prototype system.

  • PDF