• Title/Summary/Keyword: Fast Search Algorithms

Search Result 168, Processing Time 0.029 seconds

Improved 3D Shape Measurement Scheme for White Light Phase Shifting Interferometry (백색광 위상천이 간섭계를 위한 개선된 삼차원 형상 측정 방법)

  • Kim, Kyoung-Il;Lee, Dong-Yeol;Ko, Yun-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.2
    • /
    • pp.51-60
    • /
    • 2010
  • This paper proposes a new scheme to obtain enhanced 3D shape information rapidly for WLPSI(White Light Phase Shifting Interferometry). WLPSI is a convenient method to measure the height of the micro products. First we propose an effective method of limiting search interval for detecting the peak of the visibility function in order to obtain 3D shpae information rapidly. Second we propose an automatic base level decision method basad on image processing and a correction algorithm using the least square approximation method to overcome the global tilt problem of the conventional WLPSI algorithms. Third we propose an adaptive filtering method to remove the distortion known as bat-wing effect which appears near the step discontinuity. Experimental results show that the proposed overall technique is fast and provides more enhanced 3D shape information compared with the conventional WLPSI algorithms.

VLSI Design for Motion Estimation Based on Bit-plane Matching (비트 플레인 정합에 의한 움직임 추정기의 VLSI 설계)

  • Go, Yeong-Gi;O, Hyeong-Cheol;Go, Seong-Je
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.5
    • /
    • pp.509-517
    • /
    • 2001
  • Full-search algorithm requires large amount of computation which causes time delay or very complex hardware architecture for real time implementation. In this paper, we propose a fast motion estimator based on bit-plane matching, which reduce the computational complexity and the hardware cost. In the proposed motion estimator, the conventional motion estimation algorithms are applied to the binary images directly extracted from the video sequence. Furthermore, in the proposed VLSI motion estimator, we employ a Pair of processing cores that calculate the motion vector continuously By controlling the data flow in a systolic fashion using the internal shift registers in the processing cores, we avoid using SRAM (local memory) so that we remove the time overhead for accessing the local memory and adopt lower-cost fabrication technology. We modeled and tested the proposed motion estimator in VHDL, and then synthesized the whole system which has been integrated in a 0.6-$\mu$m triple-metal CMOS chip of size 8.15 X 10.84$\textrm{mm}^2$.

  • PDF

Dynamic Cell Leveling to Support Location Based Queries in R-trees (R-tree에서 위치 기반 질의를 지원하기 위한 동적 셀 레벨링)

  • Jung, Yun-Wook;Ku, Kyong-I;Kim, Yoo-Sung
    • Journal of Korea Spatial Information System Society
    • /
    • v.6 no.2 s.12
    • /
    • pp.23-37
    • /
    • 2004
  • Location Based Services(LBSs) in mobile environments become very popular recently. For efficient LBSs, spatial database management systems must need a spatial indexing scheme such as R-trees in order to manage the huge spatial database. However, it may need unnecessary disk accesses since it needs to access objects which are not actually concerned to user's location-based queries. In this paper, to support the location-based queries efficiently, we propose a CLR-tree(Cell Leveling R-tree) in which a dynamic cell is built up within the minimum bounding rectangle of R-trees' node. The cell level of nodes is compared with the query's cell level in location-based query processing and determines the minimum search space. Also, we propose the insertion, split, deletion, and search algorithms for CRL-trees. From the experimental results, we see that a CLR-tree is able to decrease $5{\sim}20%$ of disk accesses from those of R-trees. So, a CLR-tree can be used for fast accessing spatial objects to user's location-based queries in LBSs.

  • PDF

A Study on Optimal Operation Method of Multiple Microgrid System Considering Line Flow Limits (선로제약을 고려한 복수개의 마이크로그리드 최적운영 기법에 관한 연구)

  • Park, Si-Na;An, Jeong-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.258-264
    • /
    • 2018
  • This paper presents application of a differential search (DS) meta-heuristic optimization algorithm for optimal operation of a micro grid system. The DS algorithm simulates the Brownian-like random-walk movement used by an organism to migrate. The micro grid system consists of a wind turbine, a diesel generator, a fuel cell, and a photovoltaic system. The wind turbine generator is modeled by considering the characteristics of variable output. Optimization is aimed at minimizing the cost function of the system, including fuel costs and maximizing fuel efficiency to generate electric power. The simulation was applied to a micro grid system only. This study applies the DS algorithm with excellence and efficiency in terms of coding simplicity, fast convergence speed, and accuracy in the optimal operation of micro grids based on renewable energy resources, and we compared its optimum value to other algorithms to prove its superiority.

Motion Estimation Specific Instructions and Their Hardware Architecture for ASIP (ASIP을 위한 움직임 추정 전용 연산기 구조 및 명령어 설계)

  • Hwang, Sung-Jo;SunWoo, Myung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.3
    • /
    • pp.106-111
    • /
    • 2011
  • This paper presents an ASIP (Application-specific Instruction Processor) for motion estimation that employs specific IME instructions and its programmable and reconfigurable hardware architecture for various video codecs, such as H.264/AVC, MPEG4, etc. With the proposed specific instructions and hardware accelerator, it can handle the real-time processing requirement of High Definition (HD) video. With the parallel operations and SAD unit control using pattern information, the proposed IME instruction supports not only full search algorithm but also other fast search algorithms. The hardware size is 77K gates for each Processing Element Group (PEG) which has 256 SAD PEs. The proposed ASIP runs at 160MHz with sixteen PEGs and it can handle 1080p@30 frame in real time.

Webcam-Based 2D Eye Gaze Estimation System By Means of Binary Deformable Eyeball Templates

  • Kim, Jin-Woo
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.5
    • /
    • pp.575-580
    • /
    • 2010
  • Eye gaze as a form of input was primarily developed for users who are unable to use usual interaction devices such as keyboard and the mouse; however, with the increasing accuracy in eye gaze detection with decreasing cost of development, it tends to be a practical interaction method for able-bodied users in soon future as well. This paper explores a low-cost, robust, rotation and illumination independent eye gaze system for gaze enhanced user interfaces. We introduce two brand-new algorithms for fast and sub-pixel precise pupil center detection and 2D Eye Gaze estimation by means of deformable template matching methodology. In this paper, we propose a new algorithm based on the deformable angular integral search algorithm based on minimum intensity value to localize eyeball (iris outer boundary) in gray scale eye region images. Basically, it finds the center of the pupil in order to use it in our second proposed algorithm which is about 2D eye gaze tracking. First, we detect the eye regions by means of Intel OpenCV AdaBoost Haar cascade classifiers and assign the approximate size of eyeball depending on the eye region size. Secondly, using DAISMI (Deformable Angular Integral Search by Minimum Intensity) algorithm, pupil center is detected. Then, by using the percentage of black pixels over eyeball circle area, we convert the image into binary (Black and white color) for being used in the next part: DTBGE (Deformable Template based 2D Gaze Estimation) algorithm. Finally, using DTBGE algorithm, initial pupil center coordinates are assigned and DTBGE creates new pupil center coordinates and estimates the final gaze directions and eyeball size. We have performed extensive experiments and achieved very encouraging results. Finally, we discuss the effectiveness of the proposed method through several experimental results.

Low Energy Motion Estimation Architecture using Energy Management Algorithm (에너지 관리 알고리즘을 이용한 저전력 움직임 추정기 구조)

  • Kim Eung-sup;Lee Chanho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.8C
    • /
    • pp.793-800
    • /
    • 2005
  • Computation of multimedia data increases in portable devices with the advances of the mobile and personal communication services. The energy management of such devices is very important for the battery-powered operation hours. The motion estimation in a video encoder requires huge amount of computation, and hence, consumes the largest portion of the energy consumption. In this paper, we propose a novel architecture that a low energy management scheme can be applied with several fast-search algorithms. The energy-constrained Vdd hopping (ECVH) technique reduces power consumption of the motion estimation by adaptively changing the search algorithm, the operating frequency, and the supply voltage using the remaining slack time within given power-budget. We show that the ECVH can be applied to the architecture, and that the power consumption can be efficiently reduced.

A Fast and Scalable Image Retrieval Algorithms by Leveraging Distributed Image Feature Extraction on MapReduce (MapReduce 기반 분산 이미지 특징점 추출을 활용한 빠르고 확장성 있는 이미지 검색 알고리즘)

  • Song, Hwan-Jun;Lee, Jin-Woo;Lee, Jae-Gil
    • Journal of KIISE
    • /
    • v.42 no.12
    • /
    • pp.1474-1479
    • /
    • 2015
  • With mobile devices showing marked improvement in performance in the age of the Internet of Things (IoT), there is demand for rapid processing of the extensive amount of multimedia big data. However, because research on image searching is focused mainly on increasing accuracy despite environmental changes, the development of fast processing of high-resolution multimedia data queries is slow and inefficient. Hence, we suggest a new distributed image search algorithm that ensures both high accuracy and rapid response by using feature extraction of distributed images based on MapReduce, and solves the problem of memory scalability based on BIRCH indexing. In addition, we conducted an experiment on the accuracy, processing time, and scalability of this algorithm to confirm its excellent performance.

An Efficient Approximation method of Adaptive Support-Weight Matching in Stereo Images (스테레오 영상에서의 적응적 영역 가중치 매칭의 효율적 근사화 방법)

  • Kim, Ho-Young;Lee, Seong-Won
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.902-915
    • /
    • 2011
  • Recently in the area-based stereo matching field, Adaptive Support-Weight (ASW) method that weights matching cost adaptively according to the luminance intensity and the geometric difference shows promising matching performance. However, ASW requires more computational cost than other matching algorithms do and its real-time implementation becomes impractical. By applying Integral Histogram technique after approximating to the Bilateral filter equation, the computational time of ASW can be restricted in constant time regardless of the support window size. However, Integral Histogram technique causes loss of the matching accuracy during approximation process of the original ASW equation. In this paper, we propose a novel algorithm that maintains the ASW algorithm's matching accuracy while reducing the computational costs. In the proposed algorithm, we propose Sub-Block method that groups the pixels within the support area. We also propose the method adjusting the disparity search range depending on edge information. The proposed technique reduces the calculation time efficiently while improving the matching accuracy.

An Analysis on Range Block Coherences for Fractal Compression (프랙탈 압축을 위한 레인지 블록간의 유사성 분석)

  • 김영봉
    • Journal of Korea Multimedia Society
    • /
    • v.2 no.4
    • /
    • pp.409-418
    • /
    • 1999
  • The fractal image compression is based on the self-similarity that some area in an image exhibits a very similar shape with other areas. This compression technique has very long encoding time although it has high compression ratio and fast decompression. To cut-off the encoding time, most researches have restricted the search of domain blocks for a range block. These researches have been mainly focused on the coherence between a domain block and a range block, while they have not utilized the coherence among range blocks well. Therefore, we give an analysis on the coherence among range blocks in order to develope an efficient fractal Image compression algorithm. We analysis the range blocks according to not only measures for defining the range block coherence but also threshold of each measure. If these results are joined in a prior work of other fractal compression algorithms, it will give a great effectiveness in encoding time.

  • PDF