• Title/Summary/Keyword: Farm automation

Search Result 50, Processing Time 0.023 seconds

Development of a Linear Chemigation System (가로주행식 케미게이션 시스템의 개발)

  • 구영모;배영환;박금주;정상옥
    • Journal of Biosystems Engineering
    • /
    • v.26 no.2
    • /
    • pp.93-104
    • /
    • 2001
  • A linear chemigation system, integrating agrichemical appication units of pesticide and fertilizer into an irrigation system, was selected as a suitable model for the cost savings in farm management and automation. Technical designs were conducted in the areas of structure, power, drive, control, and hydraulic systems. An experimental farm was sectioned into the fields of 40m by 200m and systemized with the linear-move chemigation system of 36m in span. The chemigation system consisted of a base unit monitoring and controlling overall operation, and a driving unit traveling linearly and injecting agrichemicals. Monitoring and interlocking systems were utilized against unexpected malfunctions of power, injection and drive systems using radio freuency modems between the units. The system can be also modified to various farm sizes and stationary systems of indoor and outdoor.

  • PDF

Implementation of an Automation System Using Fuzzy Expertized Control Algorithm for the Cultivation in a Greenhouse (퍼지 전문가 제어 기법을 이용한 시설재배 자동화 소프트웨어의 구현)

  • Kim, Seung-Woo
    • The Journal of Korean Association of Computer Education
    • /
    • v.7 no.1
    • /
    • pp.67-77
    • /
    • 2004
  • In this paper, a new approach to the automation of the cultivation in a green house is suggested and a practical automatic control cultivation system is implemented. To automatically control and optimize the very nonlinear and time-varying growth of farm products, a hybrid strategy(FECA, Fuzzy Expertized Control Algorithm) is proposed which serially combines a fuzzy expert system with the fuzzy logic control. The fuzzy expert system(FMES, Fuzzy Model-based Expert System is intended to overcome the non-linearity of the growth of farm products. The part of fuzzy controller(FLC, Fuzzy Logic Controller) is incorporated to solve the time-variance of the growth of farm products. Finally, the efficiency and the effectiveness of the implemented agricultural automation system is presented through the cultivation results.

  • PDF

Implementation of an Automatic Control System for the Cultivation in a Greenhouse Using Fuzzy Expertized Control Algorithm (퍼지 전문가 제어 알고리즘을 이용한 시설 재배 자동 제어 시스템의 구현)

  • 노희석;김영식;김승우
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.59-62
    • /
    • 2000
  • In cope with insufficient agricultural labor and requirement of high quality product Hydroponics is a really good method. It makes the high density agriculture possible and all the growing environments controllable. So its research is so much progressing to maximize the quantity and quality of farm products. Furthermore, the big progress, in the research of a future agriculture, is systematically conducted for the automatic controlled system. In this paper, a new approach to the automation of the cultivation in a green house is suggested and a practical automatic control cultivation system is implemented. To automatically control and optimize the very nonlinear and time-varying growth of farm products, a hybrid strategy(FECA; Fuzzy Expertized Control Algorithm) is proposed which serially combines a fuzzy expert system with the fuzzy logic control. The fuzzy expert system(FMES; Fuzzy Model-based Expert System) is intended to overcome the non-linearity of the growth of farm products. The part of fuzzy controller is incorporated to solve the time-variance of the growth of farm products. Finally, the efficiency and the effectiveness of the implemented agricultural automation system is presented through the cultiviation results.

  • PDF

A Study on Implementation of an Automation System for the Culture-Fluid Weighing System Using Fuzzy Expertized Control Algorithm (퍼지 전문가 제어 알고리즘을 이용한 배양액 중량 제어시스템의 구현)

  • Rho, Hee-Seok;Kim, Seung-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2992-2994
    • /
    • 2000
  • In cope with insufficient agricultural labor and requirement of high quality product Hydroponics is a really good method. It makes the high density agriculture possible and all the growing environments controllable. So its research is so much progressing to maximize the quantity and quality of farm products. Furthermore, the big progress, in the research of a future agriculture. is systematically conducted for the automatic controlled system. In this paper, a practical automatic control cultivation system is implemented. To automatically control and optimize the very nonlinear and time-varying growth of farm products, a hybrid strategy(FECA: Fuzzy Expertized Control Algorithm) is proposed which serially combines a fuzzy expert system with the fuzzy logic control. The fuzzy expert system (FMES: Fuzzy Model-based Expert System) is intended to overcome the non-linearity of the growth of farm products. The part of fuzzy controller is incorporated to solve the time-variance of the growth of farm products. Finally. the efficiency and the effectiveness of the implemented agricultural automation system is presented through the cultivation results.

  • PDF

Development of Smart Platform based on MQTT (MQTT 기반 스마트 플랫폼 개발)

  • Kim, Gwan-hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.283-284
    • /
    • 2021
  • The domestic and overseas IoT (Internet of Things)-based automation industry is developing remarkably, and the development of this automation technology is further accelerated by the development of sensor technology. In recent years, the smart farm industry for the purpose of growing crops based on various sensor technologies is rapidly developing. In the case of smart farms, real-time monitoring and mobile services are provided by measuring representative environmental data such as temperature, humidity, and CO2 required for crop cultivation. Most of these environmental monitoring and control operations use the RS-485-based Modbus (RTU) communication method. In this paper, we intend to test the performance of sensor data and actuator information required for smart farm construction by building a platform for controlling sensor data and actuators based on LabView using MQTT (Message Queuing Telemetry Transport), an IoT standard protocol.

  • PDF

Expert System for Selecting Optimized Farm Machinery in Rice Farming(I) -Program to Minimize Cost in Utilization of Farm Machinery- (수도작을 위한 적정 농기계 선정 전문가 시스템 개발(I) -최소 이용 비용 농기계 선정 프로그램-)

  • 이용범;조성인;유경선;유병기
    • Journal of Biosystems Engineering
    • /
    • v.21 no.4
    • /
    • pp.474-481
    • /
    • 1996
  • Farm mechanization has been rapidly progressed in rice farming since the 1980's, in Korea. The mechanization has been achieved up to 95-97% in the year of 1995, except irrigation and drying process. However, rice production cost remains much more expensive than the cost of other rice farming countries. Since labor cost shares a major portion of the production costs, it is essential to save labor cost with automation and more sophisticated mechanization. However, it requires great capital investment which causes farm management worse. Therefore, the computer program was developed which can select machines to minimize the management and maintenance cost by analyzing available working days in different areas, machinery to purchase, farming size, total farming size in a village, number of machines and custom fee.

  • PDF

A Study on the Implementation of Raspberry Pi Based Educational Smart Farm

  • Min-jeong Koo
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.458-463
    • /
    • 2023
  • This study presents a paper on the implementation of a Raspberry Pi-based educational smart farm system. It confirms that in a real smart farm environment, the control of temperature, humidity, soil moisture, and light intensity can be smoothly managed. It also includes remote monitoring and control of sensor information through a web service. Additionally, information about intruders collected by the Pi camera is transmitted to the administrator. Although the cost of existing smart farms varies depending on the location, material, and type of installation, it costs 400 million won for polytunnel and 1.5 billion won for glass greenhouses when constructing 0.5ha (1,500 pyeong) on average. Nevertheless, among the problems of smart farms, there are lax locks, malfunctions to automation, and errors in smart farm sensors (power problems, etc.). We believe that this study can protect crops at low cost if it is complementarily used to improve the security and reliability of expensive smart farms. The cost of using this study is about 100,000 won, so it can be used inexpensively even when applied to the area. In addition, in the case of plant cultivators, cultivators with remote control functions are sold for more than 1 million won, so they can be used as low-cost plant cultivators.

Retrospection on Agricultural Mechanization Researches (농업기계화 연구에 대한 고찰)

  • 이동현;박원규
    • Journal of Biosystems Engineering
    • /
    • v.24 no.5
    • /
    • pp.453-462
    • /
    • 1999
  • At the time of discontinuing the publishing of RDA Journal of Farm management and agricultural engineering the present paper is to review the research results produced since 1962 to 1998. During the three decades, from 1960s to 1980s, the main research efforts were focused o mechanization of rice farming which contributed in food grain productions. In the 1990s, the research direction was shifted to horticultural productions and producing high quality agricultural products. We had put stress on practical use of farm mechanization, mainly on transplanting and seeding operation for rice and upland and horticultural crops productions and harvest and threshing machinery developments, in which we thought our research direction had not been quite right. However, in the future we are going to promote mechanization on livestock and upland crops productions. Furthermore, we have a plan to employ cutting edge technologies in agricultural machinery developments in order to automate and unman all farm operations satisfying the needs of advanced agricultural mechanization technology in the twenty first century.

  • PDF

Development of a Remote Control Equipment For Farm Automation (농촌 자동화를 위한 원격 제어 장치 개발)

  • Choi, Jong-Jun;Park, Sang-Ho;Choi, Young-Kiu
    • 전자공학회논문지 IE
    • /
    • v.45 no.4
    • /
    • pp.19-26
    • /
    • 2008
  • The purpose of this paper is to build a system applicable to floriculture, hydroponics and vinyl house agriculture by a development of remote control equipments using programmable logic controllers (PLC). Remote factory automation and home automation systems have been developed and used due to the rapid progress in the fields of information and automation; however, the systems are so expensive that their applications have not been feasible in agriculture. So we have developed simple modules for PLC to replace the expensive conventional systems. The developed systems have potentials to be applied to automation systems in agricultural industry. Technologies for motor control, microprocessor, PLC programming and wireless interface are developed and implemented in the form of application modules of our systems, and our system is applicable to the remote form automation of floriculture and hydroponics.

A Study on the Smart Farm Characteristics Using Multiple Sensors (다중 센서를 이용한 스마트팜 특성 연구)

  • Kwon, Oh-Hoon;Kang, In-chang;Min, Dong-Sun;Im, He-Beom;Park, Yong-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.719-724
    • /
    • 2021
  • In this paper, we studied properties of smart farms that can automatically control not only the temperature and humidity but also the illumination to improve plant productivity. The smart farm was designed to allow the controllers to operate through Arduino by receiving input values from each sensor. In addition, to maximize the convenience of smart farm, the Bluetooth communication module is used to control the smart phone. The study confirmed that the automation function of smart farms can create an environment suitable for plants to grow.