• Title/Summary/Keyword: Faraday Effect

Search Result 90, Processing Time 0.028 seconds

A Study on Particle Diffusion to Develop Faraday Cup Array of Particle Beam Mass Spectrometer System (Faraday cup array 개발을 위한 Particle Beam Mass Spectrometer 시스템 내에서의 입자 확산 연구)

  • Mun, Ji-Hun;Shin, Yong-Hyun;Kim, Tae-Sung;Kang, Sang-Woo
    • Particle and aerosol research
    • /
    • v.8 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • The Faraday cup electrode of different size has been developed and evaluated to investigate the diffusion effect of particles by Brownian motion in a particle beam mass spectrometer(PBMS). Particles which focused and accelerated by aerodynamic lens are charged to saturation in an electron beam, and then deflected electrostatically into a Faraday cup detector for measurement of the particle current. The concentration of particles is converted from currents detected by Faraday cup. Measurements of particle current as a function of deflection voltage are combined with measured relationships between particle velocity and diameter, charge and diameter, and mass and diameter, to determine the particle size distribution. The particle currents were measured using 5, 10, 20, 40 mm sized Faraday cup that can be move to one direction by motion shaft. The current difference for each sizes as a function of position was compared to figure out diffusion effect during transport. Polystyrene latex(PSL) 100, 200 nm sized standard particles were used for evaluation. The measurement using 5 mm sized Faraday cup has the highest resolution in a diffusion distance and the smaller particles had widely diffused.

Faraday Rotation of the Hoya FR5 and FR4 Glasses at Cryogenic Temperature (저온에서 Hoya FR5 및 FR4 유리의 Faraday 회전)

  • 이현곤;원영희;이경수
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.352-358
    • /
    • 1995
  • Measurements of the Faraday rotation and magnetization of terbium-doped Hoya FR5 glass and cerium-doped Hoya FR4 glass have been made as a function of temperature T in the range 4.2 K -10 K and of magnetic field H of up to 80 kG at the $Ar^+$ laser wavelength of 514.5nm. The saturations of magnetization and Faraday rotation above H/T> $5kG.K^{-1}$ can be analyzed by the quantum theory of paramagnetism. Calculated parameters show that the large Verdet constant of $Ce^{3+}$ glass is due to the effective $4f\rightarrow5d$ electric dipole transition effect and that of $Tb^{3+}$ glass is due to the magnetization effect.effect.

  • PDF

Extraordinary Optical Transmission and Enhanced Magneto-optical Faraday Effect in the Cascaded Double-fishnet Structure with Periodic Rectangular Apertures

  • Lei, Chengxin;Man, Zhongsheng;Tang, Shaolong
    • Current Optics and Photonics
    • /
    • v.4 no.2
    • /
    • pp.134-140
    • /
    • 2020
  • A significant enhancement of the magneto-optical Faraday rotation and extraordinary optical transmission (EOT) in the cascaded double-fishnet (CDF) structure with periodic rectangular apertures is theoretically predicted by using the extended finite difference time domain (FDTD) method. The results demonstrate that the transmittance spectrum of the CDF structure has two EOT resonant peaks in a broad spectrum spanning visible to near-infrared wavebands, one of them coinciding with the enhanced Faraday rotation and large figure of merit (FOM) at the same wavelength. It is most important that the resonant position and intensity of the transmittance, Faraday rotation and FOM can be simply tailored by adjusting the incident wavelength, the thickness of the magnetic layer, and the offset between two metallic rectangular apertures, etc. Furthermore, the intrinsic physical mechanism of the resonance characteristics of the transmittance and Faraday rotation is thoroughly studied by investigating the electromagnetic field distributions at the location of resonance. It is shown that the transmittance resonance is mainly determined by different hybrid modes of surface plasmons (SPs) and plasmonic electromagnetically induced transparency (EIT) behavior, and the enhancement of Faraday rotation is mostly governed by the plasmonic electromagnetically induced absorption (EIA) behavior and the conversion of the transverse magnetic (TM) mode and transverse electric (TE) mode in the magnetic dielectric layer.

Application of an Optical Current Transformer For Measuring High Current

  • Kim, Yeong-Min;Park, Won-Zoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.11
    • /
    • pp.9-16
    • /
    • 2010
  • This paper examines the temperature characteristics of an Optical CT (optical current transformer) using the Faraday effect for measuring high current in a super high voltage-power apparatus. It is performed as follows by the sensor for embodying Faraday effect. $\cdot$ A single-mode optical fiber capable of maintaining a polarization state is used. $\cdot$ A light source is applied at 1310[nm] to a Laser Diode. $\cdot$ The Linear of Faraday effect to a large current is evaluated and $\cdot$ A possible application using an Optical CT was shown. An Influence of Faraday effect to the surrounding temperature measured -40~50[$^{\circ}C$], and the characteristic of the current sensitivity was reported. An application using the results of the temperature compensation system was used in order to compensate for surrounding temperatures. A possibility of applying Optical CT for electric power apparatus was advanced further. We were able to confirm that this temperature calibration method can minimize the fluctuation of the output signal depending on the temperature conditions.

Optical Current Snesor using Faraday Effect (Faraday 효과를 이용한 광 전류 센서)

  • 김수길
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.97-101
    • /
    • 2002
  • The optical current transformer using Faraday effect is the sensor to measure current that flows in any conductor. This sensor doesn't undergo the magnetic saturation and effect of adjacent conductors. But this senor using bulk-glass sensing element has crucial drawback. It is impossible that the sensor is mounted to conductor without breaking the closed-loop of light or conductor. So we developed the clamp-type optical current transformer and made an experiment.

  • PDF

Analysis of Electrocoagulation Process using Faraday's Law (Faraday's Law에 의한 전기응집공정의 분석)

  • Kim, Hye-Sook;Yun, Young-Im;Cho, Eun-Jeong;Choi, Yun-Hee;Oh, Mi-Young;Kim, Yeong-Kwan
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.351-355
    • /
    • 2001
  • This research was carried out to find out the possibility of using Faraday's law in analyzing the electrocoagulation system. Bench-scale reactor equipped with aluminum electrode plates was operated using synthetic wastewater which received sodium chloride for conductivity adjustment. Phosphate was added to the wastewater to induce the precipitation with Al. The amount of aluminum dissolved from the electrodes could be predicted by Faraday's law with a difference less than 5%. This difference was greater at a higher electric current, probably due to the increased solution temperature. However, effect of pH on the dissolution of the aluminum was negligible. The result of this study suggested that the operating condition of electrocoagulation system could be developed using the Faraday's law when the pollutant concentration is given.

  • PDF

Implantation of DC Optical Current Sensor Based on Faraday Effect for HVDC (페러데이 효과를 이용한 특고압 직류전송용 광전류 센서 구현)

  • Kim, Kwang Taek;Chung, Dae Won;Kim, Young Soo
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.187-190
    • /
    • 2019
  • We proposed and demonstrated DC(direct current) optical current sensor based on Faraday effect for HVDC(high voltage direct current). The RIG((Bi1.3Gd0.43Y1.27)Fe5O12) was adopted as Faraday device because of its high Verdet constant and good thermal stability. The differential amplification scheme for signal processing was present. The sensor showed high linear response for the input current. Measurement range of the sensor was 0~200A and measurement error was less than 1%.

Stabilization of Fiber-optic Current Sensor Using a Faraday Rotator Mirror (Faraday 반사경을 이용한 광섬유형 전류센서의 안정화)

  • 김기혁;송민호
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.6
    • /
    • pp.72-76
    • /
    • 2003
  • We developed a polarimetric fiber-optic current sensor using a length of twisted fiber and a Faraday rotator mirror which was used to suppress the linear birefringence effect. A gold coated mirror was also used as the sensor coil reflector, and the results were compared with the case of FRM. From the experimental results, it is clear that the FRM greatly enhances the stability of the fiber optic current sensor output..

Study of Clamp-type Optical Current Transformer using Faraday Effect (Faraday 효과를 이용한 클램프형 광-전류 변류기 연구)

  • 김수길;이용욱;이병호;임용훈;홍선기
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.6
    • /
    • pp.60-65
    • /
    • 2003
  • In this paper, we analyzed theoretically design requirement of a clamp-type optical current transformer(COCT)head, and manufactured a COCT head based on design requirement. Also, we measured and analyzed the current of conductor, and change of optical power and sensitivity with incidence angle of light using COCT head, and demonstrated the feasibility of manufactured COCT through those experiments.