• Title/Summary/Keyword: False color

Search Result 136, Processing Time 0.03 seconds

A Quantitative Measure in Uniform Color Space for Dynamic False Contours on PDP

  • Park, Seung-Ho;Kim, Choon-Woo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.617-620
    • /
    • 2002
  • Quantitative analysis of dynamic false contours on PDP is essential to evaluate the performance of algorithms for false contour reduction. It also serves as an optimization criterion for selecting the subfield pattern. In this paper, a color difference in uniform color space is defined as a new measure for dynamic false contours. Unlike the measures in previous works, it accounts for the channel dependencies among the RGB color channels.

  • PDF

Analysis of False Color Visualization for HDR Image (HDR영상에서 가색상 시각화 알고리즘 분석)

  • Lee, Yong-Hwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.82-86
    • /
    • 2017
  • High dynamic range (HDR) imaging offers a radically approach of representing colors in digital images. Instead of using the range of colors produced by given devices, HDR imaging method manipulates and stores all colors and brightness levels visible to the human eye. To faithfully represent, store and then reproduce all these effects, the original scene must be stored and treated using high fidelity HDR techniques. Then, tone mapping is required to accommodate HDR image to low dynamic range (LDR) devices, and tone mapping operation of HDR image for realistic display is commonly researched. However, color visualization for analyzing scene luminance in HDR imaging has less attention from researches. This paper presents and implements a method for reproduction and visualization of the false color in HDR images. We produce a color visualization framework with several mapping functions, and evaluate their effectiveness by using RMAE and SNR with commonly used HDR image data. Experiment reveals that the sigmodal mapping function shows better performance in the false color visualization, compared to other methods.

  • PDF

Exploiting Color Segmentation in Pedestrian Upper-body Detection (보행자 상반신 검출에서의 컬러 세그먼테이션 활용)

  • Park, Lae-Jeong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.181-186
    • /
    • 2014
  • The paper proposes a new method of segmentation-based feature extraction to improve performance in pedestrian upper-body detection. General pedestrian detectors that use local features are often plagued by false positives due to the locality. Color information of multi parts of the upper body is utilized in figure-ground segmentation scheme to extract an salient, "global" shape feature capable of reducing the false positives. The performance of the multi-part color segmentation-based feature is evaluated by changing color spaces and the parameters of color histogram. The experimental result from an upper-body dataset shows that the proposed feature is effective in reducing the false positives of local feature-based detectors.

The Generation of SPOT True Color Image Using Neural Network Algorithm

  • Chen, Chi-Farn;Huang, Chih-Yung
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.940-942
    • /
    • 2003
  • In an attempt to enhance the visual effect of SPOT image, this study develops a neural network algorithm to transform SPOT false color into simulated true color. The method has been tested using Landsat TM and SPOT images. The qualitative and quantitative comparisons indicate that the striking similarity can be found between the true and simulated true images in terms of the visual looks and the statistical analysis.

  • PDF

Fast and Efficient Method for Fire Detection Using Image Processing

  • Celik, Turgay
    • ETRI Journal
    • /
    • v.32 no.6
    • /
    • pp.881-890
    • /
    • 2010
  • Conventional fire detection systems use physical sensors to detect fire. Chemical properties of particles in the air are acquired by sensors and are used by conventional fire detection systems to raise an alarm. However, this can also cause false alarms; for example, a person smoking in a room may trigger a typical fire alarm system. In order to manage false alarms of conventional fire detection systems, a computer vision-based fire detection algorithm is proposed in this paper. The proposed fire detection algorithm consists of two main parts: fire color modeling and motion detection. The algorithm can be used in parallel with conventional fire detection systems to reduce false alarms. It can also be deployed as a stand-alone system to detect fire by using video frames acquired through a video acquisition device. A novel fire color model is developed in CIE $L^*a^*b^*$ color space to identify fire pixels. The proposed fire color model is tested with ten diverse video sequences including different types of fire. The experimental results are quite encouraging in terms of correctly classifying fire pixels according to color information only. The overall fire detection system's performance is tested over a benchmark fire video database, and its performance is compared with the state-of-the-art fire detection method.

Preprocessing Technique for Lane Detection Using Image Clustering and HSV Color Model (영상 클러스터링과 HSV 컬러 모델을 이용한 차선 검출 전처리 기법)

  • Choi, Na-Rae;Choi, Sang-Il
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.144-152
    • /
    • 2017
  • Among the technologies for implementing autonomous vehicles, advanced driver assistance system is a key technology to support driver's safe driving. In the technology using the vision sensor having a high utility, various preprocessing methods are used prior to feature extraction for lane detection. However, in the existing methods, the unnecessary lane candidates such as cars, lawns, and road separator in the road area are false positive. In addition, there are cases where the lane candidate itself can not be extracted in the area under the overpass, the lane within the dark shadow, the center lane of yellow, and weak lane. In this paper, we propose an efficient preprocessing method using k-means clustering for image division and the HSV color model. When the proposed preprocessing method is applied, the true positive region is maximally maintained during the lane detection and many false positive regions are removed.

Adaptive Smoothing Algorithm Based on Censoring for Removing False Color Noise Caused by De-mosaicing on Bayer Pattern CFA (Bayer 패턴의 de-mosaicing 과정에서 발생하는 색상잡음 제거를 위한 검열기반 적응적 평탄화 기법)

  • Hwang, Sung-Hyun;Kim, Chae-Sung;Moon, Ji-He
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.403-406
    • /
    • 2005
  • The purpose of this paper is to propose ways to remove false color noise (FCN) generated during de-mosaicing on RGB Bayer pattern images. In case of images sensors adapting Bayer pattern color filters array (CFA), de-mosaicing is conducted to recover the RGB color data in single pixels. Here, FCN phenomena would occur where there is clearer silhouette or contrast of colors. The FCN phenomena found during de-mosaicking process appears locally in the edges inside the image and the proposed method of eliminating this is to convert RGB color space to YCbCr space to conduct smoothing process. Moreover, for edges where different colors come together, censoring based smoothing technique is proposed as a way to minimize color blurring effect.

  • PDF

Classification of Micro-Landform on the Alluvial Plain Using Landsat TM Image: The Case of the Kum-ho River Basin Area (Landsat TM 영상(映像)을 이용한 충적평가(沖積平野) 미지형(微地形) 분류(分類) -금호강(琴湖江) 유역평야(流域平野)를 대상으로-)

  • Jo, Myung-Hee;Jo, Wha-Ryong
    • Journal of the Korean association of regional geographers
    • /
    • v.2 no.2
    • /
    • pp.197-204
    • /
    • 1996
  • We attempt to classifing method of micro-landform on the alluvial plain, such as natural-levee, backmarsh and alluvial fan, using false color composite of Landsat Thematic Mapper image. The study area is Kumho River Basin on the southeastern part of Korea peninsula. The most effective image for micro-landform classification is the false color composite of band 2, 3 and 4 with blue, green and red filtering. The most favorable time is the middle third of November, because of the density differentiation of green vegetation in most great. In this time the paddy field on the back-marsh is bare by rice harvesting. But on the natural levee the green vegetation, such as vegetables and lower herbs under fruit tree, remain relatively more. On the alluvial fan, the green vegetation condition is medium. For the verification of the micro-landform classification, we employed the field survey and grain size analysis of the deposition of each micro-landform on the sample area. It is clarified that the classification method of micro-landform on the alluvial plain using the Landsat TM image is relatively useful.

  • PDF

Video Flame Detection with Periodicity Analysis Based False Alarm Rejection (주기 신호 검출을 통한 거짓 경보 제거 기능을 갖춘 비디오 화염 감지 기법)

  • Lee, Sang-Hak
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.4
    • /
    • pp.479-485
    • /
    • 2011
  • A video flame detection method analyze the temporal and spatial characteristics of the regions which have the flame-like color and moving objects in the input video. The video flame detector should be able to reduce a false alarm rate without the degradation of flame detection capability. The conventional methods can reject the false alarm caused by the car lights and some electric lights. However they make the false alarm caused by the warning lights, neon sign, and some periodic flickering lights which have the flame-like color and temporal features. This paper propose the video flame detection method with periodicity analysis based false alarm rejection. The proposed method can detect the periodicity of the flickering electric lights and can reject the false alarm caused by the periodic electric lights. The computer simulation showed that the proposed method did not make the false alarm in the test video with the periodic electric lights. But the conventional methods made a false alarm in the same test video.

2-Stage Adaptive Skin Color Model for Effective Skin Color Segmentation in a Single Image (단일 영상에서 효과적인 피부색 검출을 위한 2단계 적응적 피부색 모델)

  • Do, Jun-Hyeong;Kim, Keun-Ho;Kim, Jong-Yeol
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.193-196
    • /
    • 2009
  • Most of studies adopt a fixed skin color model to segment skin color region in a single image. The methods, however, result in low detection rates or high false positive error rates since the distribution of skin color is varies depending on the characteristics of input image. For the effective skin color segmentation, therefore, we need a adaptive skin color model which changes the model depending on the color distribution of input image. In this paper, we propose a novel adaptive skin color segmentation algorithm consisting of 2 stages which results in both high detection rate and low false positive error rate.

  • PDF