• Title/Summary/Keyword: Failure of fixation

Search Result 161, Processing Time 0.021 seconds

The Influence of Fixation Rigidity on Intervertebral Joints - An Experimental Comparison between a Rigid and a Flexible System

  • Kim, Won-Joong;Lee, Sang-Ho;Shin, Song-Woo;Rivard, Charles H.;Coillard, Christine;Rhalmi, Souad
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.5
    • /
    • pp.364-369
    • /
    • 2005
  • Objective: Spinal instrumentation without fusion often fails due to biological failure of intervertebral joints (spontaneous fusion, degeneration, etc). The purpose of this study is to investigate the influence of fixation rigidity on viability of intervertebral joints. Methods: Twenty pigs in growing period were subjected to posterior segmental fixation. Twelve were fixed with a rigid fixation system(RF) while eight were fixed with a flexible unconstrained implant(FF). At the time of the surgery, a scoliosis was created to monitor fixation adequacy. The pigs were subjected to periodic radiological examinations and 12pigs (six in RF, six in FF) were euthanized at 12-18months postoperatively for analysis. Results: The initial scoliotic curve was reduced from $31{\pm}5^{\circ}$ to $27{\pm}8^{\circ}$ in RF group (p=0.37) and from $19{\pm}4^{\circ}$ to $17{\pm}5^{\circ}$ in FF group (p=0.21). Although severe disc degeneration and spontaneous fusion of facet joints were observed in RF group, disc heights of FF group were well maintained without major signs of degeneration. Conclusion: The viability of the intervertebral joints depends on motion spinal fixation. Systems allowing intervertebral micromotion may preserve the viability of intervertebral discs and the facet joint articular cartilages while maintaining a reasonably stable fixation.

The Mechanical Effect of Rod Contouring on Rod-Screw System Strength in Spine Fixation

  • Acar, Nihat;Karakasli, Ahmet;Karaarslan, Ahmet A.;Ozcanhan, Mehmet Hilal;Ertem, Fatih;Erduran, Mehmet
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.5
    • /
    • pp.425-429
    • /
    • 2016
  • Objective : Rod-screw fixation systems are widely used for spinal instrumentation. Although many biomechanical studies on rod-screw systems have been carried out, but the effects of rod contouring on the construct strength is still not very well defined in the literature. This work examines the mechanical impact of straight, $20^{\circ}$ kyphotic, and $20^{\circ}$ lordotic rod contouring on rod-screw fixation systems, by forming a corpectomy model. Methods : The corpectomy groups were prepared using ultra-high molecular weight polyethylene samples. Non-destructive loads were applied during flexion/extension and torsion testing. Spine-loading conditions were simulated by load subjections of 100 N with a velocity of $5mm\;min^{-1}$, to ensure 8.4-Nm moment. For torsional loading, the corpectomy models were subjected to rotational displacement of $0.5^{\circ}\;s^{-1}$ to an end point of $5.0^{\circ}$, in a torsion testing machine. Results : Under both flexion and extension loading conditions the stiffness values for the lordotic rod-screw system were the highest. Under torsional loading conditions, the lordotic rod-screw system exhibited the highest torsional rigidity. Conclusion : We concluded that the lordotic rod-screw system was the most rigid among the systems tested and the risk of rod and screw failure is much higher in the kyphotic rod-screw systems. Further biomechanical studies should be attempted to compare between different rod kyphotic angles to minimize the kyphotic rod failure rate and to offer a more stable and rigid rod-screw construct models for surgical application in the kyphotic vertebrae.

Failure of Cross-Pin Femoral Fixation after Anterior Cruciate Ligament Reconstruction - A Case Report - (전방십자인대 재건술후 대퇴골 경골핀 고정의 실패 - 증례보고 -)

  • Lee Kee-Byoung;Kwon Duck-Joo;Ji Yong-Nam
    • Journal of the Korean Arthroscopy Society
    • /
    • v.7 no.1
    • /
    • pp.92-95
    • /
    • 2003
  • A 34-year-old man with ACL total rupture due to slip down injury, had received ACL reconstruction using autogenous hamstrings tendon with cross-pin femoral fixation. Postoperative course was as usual. But postoperative 3 months later, he complained posterolateral knee pain, recurrent effusion and mild instability. He was managed repeatitive aspiration and nonsteroid antiinflammatory drugs but was failed to relieve symptoms & signs. In CT scans, perforation of posteromedial femoral cortex of lateral femoral condyle was found. In second look arthroscopy, two pieces of broken femoral cross pin were found in between tibiofemoral Joint which was badly injured cartilage. We considered malposition of pins was the main cause of failure. We propose that femoral tunnel must be made more acute angle and femoral cross-pin guide must be positioned more external rotation 10-20 degree than transepicondylar axis made confirm the cross-pin tunnel position in order to avoid posterior cortex perforation and early failure.

  • PDF

Exchange Nailing for Aseptic Nonunion of the Femoral Shaft after Intramedullary Nailing

  • Ha, Sung-Soo;Oh, Chang-Wug;Jung, Jae-Wook;Kim, Joon-Woo;Park, Kyeong-Hyeon;Kim, Seong-Min
    • Journal of Trauma and Injury
    • /
    • v.33 no.2
    • /
    • pp.104-111
    • /
    • 2020
  • Purpose: Although exchange nailing is a standard method of treating femoral shaft nonunion, various rates of healing, ranging from 72% to 100%, have been reported. The purpose of this study was to evaluate the efficacy of exchange nailing in femoral shaft nonunion. Methods: We retrospectively reviewed 30 cases of aseptic femoral shaft nonunion after intramedullary nailing. The mean postsurgical period of nonunion was 66.8 weeks. A nail at least 2 mm larger in diameter was selected to replace the previous nail after reaming. Distal fixation was performed using at least two interlocking screws. The success of the procedure was determined by the finding of union on simple radiographs. Possible reasons for failure were analyzed, including the location of nonunion, the type of nonunion, and the number of screws used for distal fixation. Results: Of the 30 cases, 27 achieved primary healing with the technique of exchange nailing. The average time to achieve union was 23.1 weeks (range, 13.7-36.9 weeks). The three failures involved nonunion at the isthmic level (three of 15 cases), not at the infraisthmic level (zero of 15 cases). Of eight cases of oligotrophic nonunion, two (25%) failed to heal, and of 22 cases of hypertrophic nonunion, one (4.5%) failed to heal. Of 11 cases involving two screws at the distal fixation, two (18.2%) failed to heal, and of 19 cases involving three or more screws, one (5.3%) failed to heal. None of these findings was statistically significant. Conclusions: Exchange nailing may enable successful healing in cases of aseptic nonunion of the femoral shaft. Although nonunion at the isthmic level, oligotrophic nonunion, and weaker distal fixation seemed to be associated with a higher chance of failure, further study is needed to confirm those findings.

PHILOS plate fixation with polymethyl methacrylate cement augmentation of an osteoporotic proximal humerus fracture

  • Kim, Do-Young;Kim, Tae-Yeong;Hwang, Jung-Taek
    • Clinics in Shoulder and Elbow
    • /
    • v.23 no.3
    • /
    • pp.156-158
    • /
    • 2020
  • PHILOS plate fixation in osteoporotic proximal humerus fracture of old age is well-known for high complication rate, especially metal failure, providing various augmentation techniques, such as calcium phosphate cement, allogenous or autologous bone graft. We report a case of polymethyl methacrylate augmentation to provide appropriate reduction with a significant mechanical support. This can be a treatment option for displaced unstable osteoporotic proximal humerus fracture with marked bony defect.

Comparison of the Results after the Surgical Treatments of the Trimalleolar Ankle Fractures (족관절 삼과 골절에 대한 치료 후 결과 비교)

  • Rha, Jong-Deuk;Park, Hyun-Soo;Lim, Chang-Suk;Jang, Yeung-Soo;Park, Sang-Won;Chung, Tae-Won;Jeon, Yong-Soo
    • Journal of Korean Foot and Ankle Society
    • /
    • v.8 no.1
    • /
    • pp.86-91
    • /
    • 2004
  • Purpose: To evaluate the methods and results of the surgical treatment in the trimalleolar fracture of the ankle. Materials and Methods: We analysed the results of the ankle trimalleolar fracture which were treated with open reduction and internal fixation from January 1999 till September 2003. There were 45 patients who had at least six months follow up, 16 men, and 29 women. We have analysed the mechanism of injury, methods of operation and postoperative complications. Results: The results were assessed on ankle AP, lateral and mortise X-rays and retrospective chart review. There were 30 supination-external rotation, 13 pronation-external rotation, 2 pronation-abduction in the mechanism of injury by Lauge-Hansen classification. Cases of the posterior malleolar fracture which involved more than 25% of the weight bearing surface were 7 (15.6%). Medial malleolar mono-fixation was done in 5 cases, fibular mono-fixation in 2 cases, bimalleolar fixation in 32 cases, trimalleolar fixation in 6 cases. 38 cases (84.4%) were good or excellent in clincal assessment and 39 cases (86.7%) were good or excellent in radiological assessment according to the criteria of the Meyer. There was no difference of results among the surgical treatment methods. Conclusion: The results of our study indicate that the rigid fixation with early ankle motion and weight bearing is needed in ankle trimalleolar fracture. But minimal fixation is not bad in slight displaced fracture. Both anterior approach and posterior approach were useful methods to stabilization the posterior malleolar fracture. And pre-operative evaluation to detect the hidden soft tissue injuries and fracture mechanism is very important to avoid the failure.

  • PDF

Bone Cement-Augmented Short Segment Fixation with Percutaneous Screws for Thoracolumbar Burst Fractures Accompanied by Severe Osteoporosis

  • Jung, Hyun Jin;Kim, Seok Won;Ju, Chang Il;Kim, Sung Hoon;Kim, Hyen Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.4
    • /
    • pp.353-358
    • /
    • 2012
  • Objective : The purpose of this study was to determine the efficacy of bone cement-augmented short segment fixation using percutaneous screws for thoracolumbar burst fractures in a background of severe osteoporosis. Methods : Sixteen patients with a single-level thoracolumbar burst fracture (T11-L2) accompanying severe osteoporosis treated from January 2008 to November 2009 were prospectively analyzed. Surgical procedures included postural reduction for 3 days and bone cement augmented percutaneous screw fixation at the fracture level and at adjacent levels without bone fusion. Due to the possibility of implant failure, patients underwent implant removal 12 months after screw fixation. Imaging and clinical findings, including involved vertebral levels, local kyphosis, canal encroachment, and complications were analyzed. Results : Prior to surgery, mean pain score (visual analogue scale) was 8.2 and this decreased to a mean of 2.2 at 12 months after screw fixation. None of the patients complained of pain worsening during the 6 months following implant removal. The percentage of canal compromise at the fractured level improved from a mean of 41.0% to 18.4% at 12 months after surgery. Mean kyphotic angle was improved significantly from $19.8^{\circ}$ before surgery to 7.8 at 12 months after screw fixation. Canal compromise and kyphotic angle improvements were maintained at 6 months after implant removal. No significant neurological deterioration or complications occurred after screw removal in any patient. Conclusion : Bone cement augmented short segment fixation using a percutaneous system can be an alternative to the traditional open technique for the management of selected thoracolumbar burst fractures accompanied by severe osteoporosis.

Additional axial K-wire Fixation for Proximal Crescentic Metatarsal Osteotomy : A Biomechanical Study (반월형 근위 중족골 절골술에 대한 보강적 축성 K-강선 고정술 : 생체역학적 연구)

  • Jung, Hong-Geun;Kim, You-Jin;Guyton, Gregory
    • Journal of Korean Foot and Ankle Society
    • /
    • v.7 no.2
    • /
    • pp.151-156
    • /
    • 2003
  • Purpose: Proximal crescentic metatarsal osteotomy(PMO) is one of the most common procedures for correcting moderate to severe degree hallux valgus deformity. Although screw fixation is used for osteotomy site stability, loss of reduction can occur. The purpose of this study is to compare the sagittal plane stability of the conventional crescentic PMO fixed with a single screw with that of the crescentic PMO fixed with 1 screw and 2 supplemental K -wires. Material and Methods: Ten matched pairs of cadaveric foot specimens were used for the proximal crescentic metatarsal osteotomy. For one foot specimen of each pair, crescentic osteotomy was fixed with 4mm long threaded cannulated screw, while the matched pair was prepared by adding two axial 1.6mm K-wires to the conventionally fixed 4mm screw. The extensometer was used to measure the osteotomy gap as the metatarsal head was loaded continuously until failure using a servohydraulic MTS Mini Bionix test frame. The strength of fixation was normalized with the bone mineral density (BMD) of the paired specimen $(N{\times}cm^{2}/gm)$, Result: The average strength of the crescentic PMO with axial K-wire fixation ($458.8cm^{2}/gm$, S.D. 434.3) was significantly higher than the standard crescentic PMO ($367.5cm^{2}/gm$, S.D. 397,9) (p=0.05). Conclusion: Supplemental fixation with two axial K-wires can be added to the crescentic PMO to enhance the initial fixation stability to prevent the loss of reduction or dorsal malunion.

  • PDF

Arthroscopic-assisted Reduction and Percutaneous Screw Fixation for Glenoid Fracture with Scapular Extension

  • Kim, Se Jin;Lee, Sung Hyun;Jung, Dae Woong;Kim, Jeong Woo
    • Clinics in Shoulder and Elbow
    • /
    • v.20 no.3
    • /
    • pp.147-152
    • /
    • 2017
  • Background: To evaluate the clinical and functional outcomes of arthroscopic-assisted reduction and percutaneous screw fixation for glenoid fractures with scapular extension, and investigate the radiologic and clinical benefits from the results. Methods: We evaluated patients treated with arthroscopic-assisted reduction and percutaneous screw fixation for glenoid fractures with scapular extension from November 2008 to September 2015. Fractures with displacement exceeding one-fourth of the anterior-articular surface or more than one-third of the posterior-articular surface in radiographic images were treated by surgery. Clinical assessment was conducted based on range of motion, Rowe score, and Constant score of injured arm and uninjured arm at last follow-up. Results: Fifteen patients with Ideberg classification grade III, IV, and V glenoid fracture who underwent arthroscopic-assisted reduction using percutaneous screw fixation were retrospectively enrolled. There were no differences in clinical outcomes at final follow-up compared to uninjured arm. Bone union was seen in all cases within five months, and the average time to bone union was 15.2 weeks. Ankylosis in one case was observed as a postoperative complication, but the symptoms improved in response to physical therapy for six months. There was no failure of fixation and neurovascular complication. Conclusions: We identified acceptable results upon radiological and clinical assessment for the arthroscopic-assisted reduction and percutaneous fixation. For this reason, we believe the method is favorable for the treatment of Ideberg type III, IV, and V glenoid fractures. Restoration of the articular surface is considered to be more important than reduction of fractures reduction of the scapula body.

Midterm outcomes of suture anchor fixation for displaced olecranon fractures

  • Michael J. Gutman;Jacob M. Kirsch;Jonathan Koa;Mohamad Y. Fares;Joseph A. Abboud
    • Clinics in Shoulder and Elbow
    • /
    • v.27 no.1
    • /
    • pp.39-44
    • /
    • 2024
  • Background: Displaced olecranon fractures constitute a challenging problem for elbow surgeons. The purpose of this study is to evaluate the role of suture anchor fixation for treating patients with displaced olecranon fractures. Methods: A retrospective review was performed for all consecutive patients with displaced olecranon fractures treated with suture anchor fixation with at least 2 years of clinical follow-up. Surgical repair was performed acutely in all cases with nonmetallic suture anchors in a double-row configuration utilizing suture augmentation via the triceps tendon. Osseous union and perioperative complications were uniformly assessed. Results: Suture anchor fixation was performed on 17 patients with displaced olecranon fractures. Functional outcome scores were collected from 12 patients (70.6%). The mean age at the time of surgery was 65.6 years, and the mean follow-up was 5.6 years. Sixteen of 17 patients (94%) achieved osseous union in an acceptable position. No hardware-related complications or fixation failure occurred. Mean postoperative shortened disabilities of the arm, shoulder, and hand (QuickDASH) score was 3.8±6.9, and mean Oxford Elbow Score was 47.5±1.0, with nine patients (75%) achieving a perfect score. Conclusions: Suture anchor fixation of displaced olecranon fractures resulted in excellent midterm functional outcomes. Additionally, this technique resulted in high rates of osseous union without any hardware-related complications or fixation failures.