• Title/Summary/Keyword: Failure Strength

Search Result 4,162, Processing Time 0.036 seconds

Evaluation of Failure Theories to Determine the Wood Strength Variation with Grain Slope

  • Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.465-473
    • /
    • 2009
  • Three failure theories were studied to evaluate the wood strength variation with grain slope. Maximum stress theory, Tsai-Hill theory and Hankinson formula were presented to hypothesize the failure of wood according to grain slope to loading direction. Red pine and Japanese larch were used as materials to simulate failure strength prediction with grain slope. Calculation of strength results was that the strength of wood drops rapidly between parallel to grain orientation (0 degree) and 15 degree grain orientation. The strength of wood with grain orientation were somewhat different at small grain angles among failure theories, and this tendency was due to tension and compression distinction, and shear accounting in each theories. For the above 45 degree grain orientation, the predicted failure strength of wood with grain variation were very close in each failure theories and were useful in assessing failure strength of wood. The applicable these theories should be considered that the wood has different behavior in tension and compression, and this lead to different strength at small grain angles in each theories. Furthermore, reconsideration is needed to assess the failure strength of wood at small grain angles in Hankinson formula and further studies are necessary to accounting for shear behavior at small grain angles.

Strength Estimation of Composite Joints Based on Progressive Failure Analysis (점진적 파손해석 기법을 이용한 복합재 체결부의 강도해석)

  • 신소영;박노회;강경국;권진회;이상관;변준형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.163-167
    • /
    • 2001
  • A two-dimensional progressive failure analysis method is presented for the strength characterization of the composite joints under pin loading. The eight-nodes laminated she]1 element is utilized based on the updated Lagrangian formulation. The criteria by Yamada-Sun, Tsai-Wu, and the maximum stress are used for the failure estimation. The stiffness of failed layer is degraded by the complete unloading method. No factor depending on test is included in the finite element analysis except for the material strength and stiffness. Total 20 plate specimens with and without hole are tested to validate the finite element prediction. The Tsai-Wu failure criterion most conservatively estimates the strength of laminate, and the maximum stress criterion yields the highest strength because it does not consider the coupling of the failure modes. The strength by Yamada-Sun method neglecting the matrix failure effect are located between other two methods and shows best agreement with test result for laminate with hole.

  • PDF

Strength failure behavior of granite containing two holes under Brazilian test

  • Huang, Yan-Hua;Yang, Sheng-Qi;Zhang, Chun-Shun
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.919-933
    • /
    • 2017
  • A series of Brazilian tests under diameter compression for disc specimens was carried out to investigate the strength and failure behavior by using acoustic emission (AE) and photography monitoring technique. On the basis of experimental results, load-displacement curves, AE counts, real-time crack evolution process, failure modes and strength property of granite specimens containing two pre-existing holes were analyzed in detail. Two typical types of load-displacement curves are identified, i.e., sudden instability (type I) and progressive failure (type II). In accordance with the two types of load-displacement curves, the AE events also have different responses. The present experiments on disc specimens containing two pre-existing holes under Brazilian test reveal four distinct failure modes, including diametrical splitting failure mode (mode I), one crack coalescence failure mode (mode II), two crack coalescences failure mode (mode III) and no crack coalescence failure mode (mode IV). Compared with intact granite specimen, the disc specimen containing two holes fails with lower strength, which is closely related to the bridge angle. The failure strength of pre-holed specimen first decreases and then increases with the bridge angle. Finally, a preliminary interpretation was proposed to explain the strength evolution law of granite specimen containing two holes based on the microscopic observation of fracture plane.

Nonlinear Strength Parameters and Failure Characteristics of Anisotropy Rock - Shales (혈암의 이방성을 고려한 비선형 강도정수 및 파괴규준식 산정)

  • 김영수;이재호;허노영;방인호;성언수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.713-720
    • /
    • 2000
  • The directional response of strength and deformation on the rocks acting by external loads is called by strength and deformability anisotropy, respectively. Peak strength and its failure criteria of anisotro rocks have been studied and reported. Many authors have investigated in detail the behavior of triaxial peak strength of anisotropic rocks(Jaeger 1960, McLamore & Gray 1967, Hoek & Brown 1980, Ramamurthy & Rao 1985). They concluded that the triaxial strength of anisotropic rocks varies according to the inclination of discontinuity in specimens. And, the minimun triaxial strength occurs in the specmen with 60° of inclination angle ; and specimens with 0° or 90° inclination have maximum triaxial strength. Based on the experimental result, the behavior triaxial strength is investigated. The triaxial compression tests due to the angle bedding plane have been conducted and the material constants, 'm' and 's', cohesion and angle of friction and nonlinear strength parameters to fit for the failure criterion were derived from the regression analysis. And, the experimental date are employed to examine three existing failure criteria for peak strength, provided by Jaeger, McLamore and Hoek & Brown and Ramamurthy & Rao. For a shale, the suitability of the failure criteiria of triaxial peak strength for anisotropic rocks is discussed.

  • PDF

Creep characteristics and instability analysis of concrete specimens with horizontal holes

  • Xin, Yajun;Hao, Haichun;Lv, Xin;Ji, Hongying
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.563-572
    • /
    • 2018
  • Uniaxial compressive strength test and uniaxial compression creep one were produced on four groups of twelve concrete specimens with different hole number by RLW-2000 rock triaxial rheology test system. The relationships between horizontal holes and instantaneous failure stress, the strain, and creep failure stress, the strain, and the relationships between stress level and instantaneous strain, creep strain were studied, and the relationship between horizontal holes and failure mode was determined. The results showed that: with horizontal hole number increasing, compressive strength of the specimens decreased whereas its peak strain increased, while both creep failure strength and its peak strain decreased. The relationships between horizontal holes and compressive strength of the specimens, the peak strain, were represented in quadratic polynomial, the relationships between horizontal holes and creep failure strength, the peak strain were represented in both linear and quadratic polynomial, respectively. Instantaneous strain decreased with stress level increasing, and the more holes in the blocks the less the damping of instantaneous strain were recorded. In the failure stress level, instantaneous strain reversally increased, creep strain showed three stages: decreasing, increasing, and sharp increasing; in same stress level, the less holes the less creep strain rate was recorded. The compressive-shear failure was produced along specimen diagonal line where the master surface of creep failure occurred, the more holes in a block, the higher chances of specimen failure and the more obvious master surface were.

Laminate Tensile Failure Strength Prediction using Stress Failure Criteria

  • Lee, Myoung Keon;Kim, Jae Hoon
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.6
    • /
    • pp.19-25
    • /
    • 2021
  • This paper presents a method that uses the stress failure criteria to predict the tensile failure strength of open-hole laminates with stress concentrations. The composite material used in this study corresponds to a 177 ℃ cured, carbon/epoxy unidirectional tape prepreg. The results obtained by testing ten different laminates were compared and analyzed to verify the tensile strength of the open-hole laminates predicted using the proposed stress failure criteria. The findings of this study confirm that the tensile strength predictions performed using the proposed method are generally accurate, except in cases involving highly soft laminates (10% of 0° ply).

Experimental behavior and shear bearing capacity calculation of RC columns with a vertical splitting failure

  • Wang, Peng;Shi, Qing X.;Wang, Qiu W.;Tao, Yi
    • Earthquakes and Structures
    • /
    • v.9 no.6
    • /
    • pp.1233-1250
    • /
    • 2015
  • The behavior of reinforced concrete (RC) columns made from high strength materials was investigated experimentally. Six high-strength concrete specimen columns (1:4 scale), which included three with high-strength transverse reinforcing bars and three with normal-strength transverse reinforcement, were tested under double curvature bending load. The effects of yielding strength and ratio of transverse reinforcement on the cracking patterns, hysteretic response, shear strength, ductility, strength reduction, energy dissipation and strain of reinforcement were studied. The test results indicated that all specimens failed in splitting failure, and specimens with high-strength transverse reinforcement exhibited better seismic performance than those with normal-strength transverse reinforcement. It also demonstrated that the strength of high-strength lateral reinforcing bars was fully utilized at the ultimate displacements. Shear strength formula of short concrete columns, which experienced a splitting failure, was proposed based on the Chinese concrete code. To enhance the applicability of the model, it was corroborated with 47 short concrete columns selected from the literature available. The results indicated that, the proposed method can give better predictions of shear strength for short columns that experienced a splitting failure than other shear strength models of ACI 318 and Chinese concrete codes.

Deterioration in strength of studs based on two-parameter fatigue failure criterion

  • Wang, Bing;Huang, Qiao;Liu, Xiaoling
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.239-250
    • /
    • 2017
  • In the concept of two-parameter fatigue failure criterion, the material fatigue failure is determined by the damage degree and the current stress level. Based on this viewpoint, a residual strength degradation model for stud shear connectors under fatigue loads is proposed in this study. First, existing residual strength degradation models and test data are summarized. Next, three series of 11 push-out specimen tests according to the standard push-out test method in Eurocode-4 are performed: the static strength test, the fatigue endurance test and the residual strength test. By introducing the "two-parameter fatigue failure criterion," a residual strength calculation model after cyclic loading is derived, considering the nonlinear fatigue damage and the current stress condition. The parameters are achieved by fitting the data from this study and some literature data. Finally, through verification using several literature reports, the results show that the model can better describe the strength degradation law of stud connectors.

Prediction of ultimate shear strength and failure modes of R/C ledge beams using machine learning framework

  • Ahmed M. Yousef;Karim Abd El-Hady;Mohamed E. El-Madawy
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.4
    • /
    • pp.337-357
    • /
    • 2022
  • The objective of this study is to present a data-driven machine learning (ML) framework for predicting ultimate shear strength and failure modes of reinforced concrete ledge beams. Experimental tests were collected on these beams with different loading, geometric and material properties. The database was analyzed using different ML algorithms including decision trees, discriminant analysis, support vector machine, logistic regression, nearest neighbors, naïve bayes, ensemble and artificial neural networks to identify the governing and critical parameters of reinforced concrete ledge beams. The results showed that ML framework can effectively identify the failure mode of these beams either web shear failure, flexural failure or ledge failure. ML framework can also derive equations for predicting the ultimate shear strength for each failure mode. A comparison of the ultimate shear strength of ledge failure was conducted between the experimental results and the results from the proposed equations and the design equations used by international codes. These comparisons indicated that the proposed ML equations predict the ultimate shear strength of reinforced concrete ledge beams better than the design equations of AASHTO LRFD-2020 or PCI-2020.

Evaluation of Failure Strength of Woven CFRP Composite Plate Subject to Axial Load by Tan-Cheng Failure Criterion (Tan-Cheng 파손기준을 이용한 직물 CFRP 적층판의 원거리 하중에 대한 파괴강도 평가)

  • Kim, Sang-Young;Park, Hong-Sun;Kang, Min-Sung;Lee, Woo-Hyung;Choi, Jung-Hun;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.360-365
    • /
    • 2009
  • In the manufacture of CFRP(Carbon Fiber Reinforced Polymer Composite) composite structures, various independent components join by bolts and pins. Holes for bolts and pins have an effect on the failure strength of such structures, because those act as notches in structures. The failure characteristic of such structures are different from those of plain plate subject to remote load. In this paper, tensile properties of woven CFRP composite plates with laminates of $0^{\circ}$, $30^{\circ}$ and $45^{\circ}$ were obtained according to ASTM D 3039. By using obtained tensile failure strength and Tan-Cheng failure criterion, tensile failure strength of CFRP laminate with arbitrary fiber angle were evaluated. Also, the degradation of tensile properties by center hole(${\phi}10mm$) with a remote load was evaluated and the failure strengths were applied to Tan's failure criterion, similarly.