• Title/Summary/Keyword: Failure Process

Search Result 2,685, Processing Time 0.038 seconds

The Development of a Failure Diagnosis System for High-Speed Manufacturing of a Paper Cup-Forming Machine (다품종 종이용기의 고속 생산을 위한 고장 진단 시스템 개발)

  • Kim, Seolha;Jang, Jaeho;Chu, Baeksuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.37-47
    • /
    • 2019
  • Recently, as demand for various paper containers has rapidly grown, it is inevitable that paper cup-forming machines have increased their manufacturing speed. However, the faster manufacturing speed naturally brings more frequent manufacturing failures, which decreases manufacturing efficiency. As such, it is necessary to develop a system that monitors the failures in real time and diagnoses the failure progress in advance. In this research, a paper cup-forming machine diagnosis system was developed. Three major failure targets, paper deviation, temperature failure, and abnormal vibration, which dominantly affect the manufacturing process when they occur, were monitored and diagnosed. To evaluate the developed diagnosis system, extensive experiments were performed with the actual data gathered from the paper cup-forming machine. Furthermore, the desired system validation was obtained. The proposed system is expected to anticipate and prevent serious promising failures in advance and lower the final defect rate considerably.

Risk Evaluation Based on the Time Dependent Expected Loss Model in FMEA (FMEA에서 시간을 고려한 기대손실모형에 기초한 위험 평가)

  • Kwon, Hyuck-Moo;Hong, Sung-Hoon;Lee, Min-Koo;Sutrisno, Agung
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.6
    • /
    • pp.104-110
    • /
    • 2011
  • In FMEA, the risk priority number(RPN) is used for risk evaluation on each failure mode. It is obtained by multiplying three components, i.e., severity, occurrence, and detectability of the corresponding failure mode. Each of the three components are usually determined on the basis of the past experience and technical knowledge. But this approach is not strictly objective in evaluating risk of a given failure mode and thus provide somewhat less scientific measure of risk. Assuming a homogeneous Poisson process for occurrence of the failures and causes, we propose a more scientific approach to evaluation of risk in FMEA. To quantify severity of each failure mode, the mission period is taken into consideration for the system. If the system faces no failure during its mission period, there are no losses. If any failure occurs during its mission period, the losses corresponding to the failure mode incurs. A longer remaining mission period is assumed to incur a larger loss. Detectability of each failure mode is then incorporated into the model assuming an exponential probability law for detection time of each failure cause. Based on the proposed model, an illustrative example and numerical analyses are provided.

Research for Modeling the Failure Data for a Repairable System with Non-monotonic Trend (복합 추세를 가지는 수리가능 시스템의 고장 데이터 모형화에 관한 연구)

  • Mun, Byeong-Min;Bae, Suk-Joo
    • Journal of Applied Reliability
    • /
    • v.9 no.2
    • /
    • pp.121-130
    • /
    • 2009
  • The power law process model the Rate of occurrence of failures(ROCOF) with monotonic trend during the operating time. However, the power law process is inappropriate when a non-monotonic trend in the failure data is observed. In this paper we deals with the reliability modeling of the failure process of large and complex repairable system whose rate of occurrence of failures shows the non-monotonic trend. We suggest a sectional model and a change-point test based on the Schwarz information criterion(SIC) to describe the non-monotonic trend. Maximum likelihood is also suggested to estimate parameters of sectional model. The suggested methods are applied to field data from an repairable system.

  • PDF

Assessing Infinite Failure Software Reliability Model Using SPC (Statistical Process Control) (통계적 공정관리(SPC)를 이용한 무한고장 소프트웨어 신뢰성 모형에 대한 접근방법 연구)

  • Kim, Hee Cheul;Shin, Hyun Cheul
    • Convergence Security Journal
    • /
    • v.12 no.6
    • /
    • pp.85-92
    • /
    • 2012
  • There are many software reliability models that are based on the times of occurrences of errors in the debugging of software. It is shown that it is possible to do asymptotic likelihood inference for software reliability models based on infinite failure model and non-homogeneous Poisson Processes (NHPP). For someone making a decision about when to market software, the conditional failure rate is an important variables. The finite failure model are used in a wide variety of practical situations. Their use in characterization problems, detection of outliers, linear estimation, study of system reliability, life-testing, survival analysis, data compression and many other fields can be seen from the many study. Statistical Process Control (SPC) can monitor the forecasting of software failure and there by contribute significantly to the improvement of software reliability. Control charts are widely used for software process control in the software industry. In this paper, we proposed a control mechanism based on NHPP using mean value function of log Poission, log-linear and Parto distribution.

Reliability Estimation of Agricultural Machinery Components Based on QFD and Failure Mechanism Analysis (QFD와 고장메커니즘 분석에 의한 농기계부품의 신뢰성평가)

  • Jung, Won
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.4
    • /
    • pp.209-217
    • /
    • 2010
  • Reliability tools such as QFD and FMEA identify voice of customer related to product design, its use, how failures may occur, the severity of such failures, and the probability of the failure occurring. With these identified items, a development team can focus on the design process and the major issues facing the product in its potential use environment for the customer. The purpose of this research is to develop a reliability estimation process of agricultural machinery components using QFD, FMEA, and field failure data. Based on QFD method, customer requirements, engineering design elements and part characteristics were deployed. Using the field failure data, failures are investigated, and Weibull B10 life are estimated. This estimation process is useful for preparing the design input and planning the durability target.

Analysis for Brazing Failure of Liquid Thruster (소형 액체 추력기 Brazing Failure 사례 분석)

  • Kim Jung-Hun;Jang Ki-Won;Lee Jae-Won;Lee Hae-Heon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.23-27
    • /
    • 2006
  • Brazing Failure has been occurred in the process of thrust chamber assembly. The possible factors have been analyzed by sample tests. The actual causes of 'Overflow' phenomenon have been investigated horn Brazing Material and fabrication of Piece Parts. The rejection rate of process has been improved by appling this results to a real brazing process.

  • PDF

Failure Behavior of Piercing Plug during Seamless Tube Manufacturing Process (심리스 튜브 제조공정 시 피어싱 플러그의 파손거동)

  • Lim, Young-Bin;Yoon, Jeong-Mo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.5
    • /
    • pp.207-214
    • /
    • 2017
  • In this study, failure behavior of piercing plug for seamless tube manufacturing process was studied. Three different kinds of passed piercing plugs (10, 90, 215 times) were prepared. The shape deformation of the passed piercing plugs was observed by 3D coordinate measuring machine, and the oxidized layer on the surface of piercing plug was observed by optical microscopy. The length reduction of piercing plug presented at 215 times passed plug. It was found that the oxidized layer consisted of outer scale, inner scale and internal oxidation layers, and the inner scale layer had vertical cracks, and interfaces had horizontal cracks. We proposed the failure mechanism of piercing plug during seamless tube manufacturing process based on the formation of vertical and horizontal crack.

Prediction of Pumping Efficacy of Left Ventricular Assist Device according to the Severity of Heart Failure: Simulation Study (심실의 부하감소 측면에서 좌심실 보조장치의 최적 치료시기 예측을 위한 시뮬레이션 연구)

  • Kim, Eun-Hye;Lim, Ki Moo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.22-28
    • /
    • 2013
  • It is important to begin left ventricular assist device (LVAD) treatment at appropriate time for heart failure patients who expect cardiac recovery after the therapy. In order to predict the optimal timing of LVAD implantation, we predicted pumping efficacy of LVAD according to the severity of heart failure theoretically. We used LVAD-implanted cardiovascular system model which consist of 8 Windkessel compartments for the simulation study. The time-varying compliance theory was used to simulate ventricular pumping function in the model. The ventricular systolic dysfunction was implemented by increasing the end-systolic ventricular compliance. Using the mathematical model, we predicted cardiac responses such as left ventricular peak pressure, cardiac output, ejection fraction, and stroke work according to the severity of ventricular systolic dysfunction under the treatments of continuous and pulsatile LVAD. Left ventricular peak pressure, which indicates the ventricular loading condition, decreased maximally at the 1st level heart-failure under pulsatile LVAD therapy and 2nd level heart-failure under continuous LVAD therapy. We conclude that optimal timing for pulsatile LVAD treatment is 1st level heart-failure and for continuous LVAD treatment is 2nd level heart-failure when considering LVAD treatment as "bridge to recovery".

Modeling Partially Dependent Double Failure States of Pressure Safety Valves (압력안전밸브의 부분적 종속 이중 고장상태 모델링)

  • Choi, Soo Hyong
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.40-43
    • /
    • 2018
  • For pressure safety valves, open failure and close failure are partially dependent on each other. A method is proposed in this work that uses a Markov process model and a Weibull distribution model in order to construct a reliability model for two kinds of failure. A pressure safety valve model is obtained from a known open failure model, an induced close failure model, and a simultaneous failure model that reproduces recently reported inspection results. It is expected that the application of the proposed method can be expanded to quantitative risk assessment of various systems that have partially dependent multiple failure states.

A Study on the Application of DFMEA for Safety Design of Weapon System (무기체계의 안전 설계를 위한 DFMEA 적용에 관한 연구)

  • Seo, Yang Woo;Oh, Young Il;Kim, Hee Wook;Kim, So Jung
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.1
    • /
    • pp.46-57
    • /
    • 2022
  • In this paper, we proposed the DFMEA Implementation Method for safety design of Weapon System. First, we presented the process for DFMEA. And then, the case analysis of OOO missile was performed in accordance with the process presented. After defining the system requirements of OOO missile, failure definition scoring criteria was set. In order to clarify the definition of failure, the failure was classified into safety, reliability, maintainability and others. After performing the function analysis, the relationship matrix analysis was performed to identify the failure mode according to the function without omission. After clarifying the failure classification, mode of failure, cause of failure and effect were analyzed to calculate the severity, occurrence and detection values. After the action priority was judged, the recommended action according to the failure classification was identified for the determined action priority. The results of this study can be used as a relevant basis for the design reflection and resource re-allocation of stakeholders.