• Title/Summary/Keyword: Facility Horticulture

Search Result 54, Processing Time 0.023 seconds

Feasibility study of the energy supply system for horticulture facility using dynamic energy simulation (동적 에너지 시뮬레이션을 이용한 시설원예용 에너지 공급시스템의 경제성 분석)

  • Yu, Min-Gyung;Cho, Jeong-Heum;Nam, Yujin
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.103-109
    • /
    • 2015
  • Recently, the usage of renewable energy system has been recommended because of the energy saving and depletion of fossil fuel. Especially, ground source heat pump system(GSHP) has a high efficiency by using annual stable ground temperature. Also, wood pellet is low cost and a high calorific value compared to fossil fuel. However, only small number of farms have applied renewable energy system to horticultural facility because of a high initial costs and uncertainty of its cost efficiency. In this study, in order to analyze the feasibility for the horticulture, TRNSYS simulation based on the standard horticultural facility was conducted in different weather and covering material conditions. Then, comparative feasibility analysis of each energy supplying system was conducted. As a result, we have found out that a high initial cost of renewable energy system was recovered by the economics of the energy cost. Due to the energy cost reduction, the payback periods were 10-11 years in the case of GSHP and 4-6 years in the case of wood pellet boiler.

An Experimental Study on Applying Heat Pump System to Facility Horticulture House (히트펌프 시스템의 시설원예 적용에 관한 실험적 연구)

  • Kim, Jae-Dol
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.88-94
    • /
    • 2013
  • As the results of analysis that are applying a heat pump using underground water as heat source of facility horticulture house, temperature change in house, growth of cultivated plants and the crop characteristic, the conclusion can be acquired as follows. It was possible to maintain the chamber temperature through operating heat pump with setting goal temperature at $16^{\circ}C$ and temperature variation at ${\pm}3^{\circ}C$. And cooling and heating coefficient of performance in heat pump system are different from setting room temperature and operation condition of equipment, totally in case that the setting temperature in house is low, the coefficient of performance and the in case that temperature departure is low. In case that the house does not heated, the result of the growth characteristic of cucumber planted last 50days is that cucumber grown in house equipped with heat pump is the most favorable growth characteristic due to maintaining a constant room temperature. After 90 days, the quantity and weight cucumber harvested in each house are averagely 9.8%, 13.1% increase and more heavy weight respectively. So it is researched that crop characteristic is superior.

The optimal control technology on complex environment in horticulture based on artificial intelligence (인공지능 기반 시설원예 최적 복합 환경 제어 기술)

  • Min, Jae Hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.756-759
    • /
    • 2017
  • The productivity of cultivated crops in Korea is low compared to the Netherlands, which is an advanced agricultural country. In addition, modernization of facility and complex environmental control technology are needed to overcome poor growth and productivity deterioration caused by shortage of sunshine, abnormal temperature and high temperature due to abnormal climate. On the other hand, domestic facility horticulture complex environmental control is a level of machine automation that can check the internal situation of a green house with a cell phone and remotely operate a sprinkler, heat cover, curtain, ventilator, Therefore, this paper suggests the development of optimum environment control technology for facility horticulture based on the growth model and the cultivation technology knowledge base in order to realize the automation of optimal complex environment control and contribute to improvement of quality and productivity of cultivated crops.

  • PDF

A study of the improvement of the national technical qualification practical evaluation method for National Competency Standards in the seed and horticulture industry

  • Hyun-Ho, Jang;Taek-Keun, Oh;Jwakyung, Sung
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.729-738
    • /
    • 2021
  • The purpose of this study was to suggest an improvement plan ultimately to develop practical evaluation methods for national technical qualifications in the field of seeds and horticulture based on the National Competency Standards. Through this, national technical qualifications can be strengthened in terms of professionalism in the seeds and horticulture field. In order to conduct this study, the national technical qualification currently in use was matched to certain competency units and competency unit elements of National Competency Standards. We then visited an industrial site to understand the practical factors related to the technical, facility and equipment aspects of the seeds and horticulture industrial field, after which a practical evaluation exam was developed. Also, for a feasibility study, a pilot test assessment was conducted for students majoring in seeds and horticulture, with a survey also conducted with field experts and an advisory committee consisting of experts in seeds and horticulture. Based on the results, by suggesting an improvement plan for a practical evaluation method leading to better national technical qualifications in the field of seeds and horticulture, it was shown to be possible to improve knowledge, technical, and literacy aspects. This can lead to the training of outstanding technical professionals. Ultimately, the results here are expected to contribute to the improvement of the seeds and horticulture industry.

Effects of Pipe Network Composition and Length on Power Plant Waste Heat Utilization System Performance for Large-scale Horticulture Facilities (발전소 온배수를 적용한 대규모 시설원예단지용 난방시스템의 열원이송 배관 재질 및 거리에 따른 성능평가)

  • Lee, Keum ho;Lee, Jae Ho;Lee, Kwang Ho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.4
    • /
    • pp.14-21
    • /
    • 2015
  • Korean government plans to establish large-scale horticulture facility complexes using reclaimed land in order to improve the national competitiveness of agriculture at the government level. One of the most significant problems arising from the establishment of those large-scale horticulture facilities is that these facilities still largely depend on a fossil fuel and they require 24 h a day heating during the winter season in order to provide the necessary breeding conditions for greenhouse crops. These facilities show large energy consumption due to the use of coverings with large heat transmission coefficients such as vinyl and glass during heating in the winter season. This study investigated the applicability of waste heat from power plant for large-scale horticulture facilities by evaluating the waste heat water temperature, heat loss and energy saving performance as a function of distance between power plant and greenhouse. As a result, utilizing power plant waste heat can reduce the energy consumption by around 85% compared to the conventional gas boiler, regardless of the distance between power plant and greenhouse.

Study on the performance analysis of long-term field test for protected horticulture heating system using solar thermal energy (태양열 시설원예 난방시스템 장기실증 성능분석 연구)

  • Lee Sang-Nam;Kang Yong-Heack;Yu Chang-Kyun;Kim Jin-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.403-407
    • /
    • 2005
  • Objective of the research is to demonstrate solar thermal space and ground heating system which is integrated to a greenhouse culture facility for reducing heating cost, increasing the value of product by environment control, and developing advanced culture technology by deploying solar thermal system. Field test for the demonstration was carried out in horticulture complex in Jeju Island. Medium scale solar hot water system was installed in a ground heating culture facility. Reliability and economic aspect of the system which was operated complementary with thermal storage and solar hot water generation were analyzed by investigating collector efficiency, operation performance, and control features. Short term day test on element performance and Long term test of the whole system were carried out. Optimum operating condition and its characteristics were closely investigated by changing the control condition based on the temperature difference which is the most important operating parameter. For establishing more reliable and optimal design data regarding system scale and operation condition, continuous operation and monitoring on the system need to be further carried out. However, it is expected that, in high-insolation areas where large-scale ground storage is adaptable, solar system demonstrated in the research could be economically competitive and promisingly disseminate over various application areas.

  • PDF

Study on the performance analysis of long-term field test for protected horticulture heating system using solar thermal energy (태양열 시설원예 난방시스템 장기실증 성능분석 연구)

  • Lee Sang-Nam;Kang Yong-Heack;Yu Chang-Kyun;Kim Jin-Soo
    • New & Renewable Energy
    • /
    • v.1 no.2 s.2
    • /
    • pp.53-59
    • /
    • 2005
  • Objective of the research is to demonstrate solar thermal space and ground heating system which is integrated to a green-house culture facility for reducing healing cost, Increasing the value of product by environment control, and developing advanced culture technology by deploying solar thermal system. Field test for the demonstration was carried out in horticulture complex In Jeju Island. Medium scale solar hot water system was installed in a ground heating culture facility. Reliability and economic aspect of the system which was operated complementary with thermal storage and solar hot water generation were analyzed by investigating collector efficiency, operation performance, and control features. Short term day test on element performance and Long term test of the whole system were carried out. Optimum operating condition and its characteristics were closely Investigated by changing the control condition based on the temperature difference which Is the most important operating parameter For establishing more reliable and optimal design data regarding system scale and operation condition, continuous operation and monitoring on the system need to be further carried out. However, It is expected that, in high-insolation areas where large-scale ground storage is adaptable, solar system demonstrated in the research could be economically competitive and promisingly disseminate over various application areas.

  • PDF

Intelligent Smart Farm A Study on Productivity: Focused on Tomato farm Households (지능형 스마트 팜 활용과 생산성에 관한 연구: 토마토 농가 사례를 중심으로)

  • Lee, Jae Kyung;Seol, Byung Moon
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.14 no.3
    • /
    • pp.185-199
    • /
    • 2019
  • Korea's facility horticulture has developed remarkably in a short period of time. However, in order to secure international competitiveness in response to unfavorable surrounding conditions such as high operating costs and market opening, it is necessary to diagnose the problems of facility horticulture and prepare countermeasures through analysis. The purpose of this study was to analyze the case of leading farmers by introducing information and communication technology (ICT) in hydroponic cultivation agriculture and horticulture, and to examine how agricultural technology utilizing smart farm and big data of facility horticulture contribute to farm productivity. Crop growth information gathering and analysis solutions were developed to analyze the productivity change factors calculated from hydroponics tomato farms and strawberry farms. The results of this study are as follows. The application range of the leaf temperature was verified to be variously utilized such as house ventilation in the facility, opening and closing of the insulation curtain, and determination of the initial watering point and the ending time point. Second, it is necessary to utilize water content information of crop growth. It was confirmed that the crop growth rate information can confirm whether the present state of crops is nutrition or reproduction, and can control the water content artificially according to photosynthesis ability. Third, utilize EC and pH information of crops. Depending on the crop, EC values should be different according to climatic conditions. It was confirmed that the current state of the crops can be confirmed by comparing EC and pH, which are measured from the supplied EC, pH and draining. Based on the results of this study, it can be confirmed that the productivity of smart farm can be affected by how to use the information of measurement growth.

Evaluation of Horticultural Characteristics on Water Dropwort (Oenanthe stolonifera DC.) Genetic Resources for Various Utilization

  • Eun Ji Kim;Sung Yong Jin;Hyun Soo Jung;Chi Seon Kim
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.51-51
    • /
    • 2022
  • Water dropwort (Oenanthe stolonifera DC.) is a perennial herbaceous plant that grows wild throughout Korea. As of 2020, 24,819 tons (51.7% of open field, 48.3% of facility) are produced in 1,278 ha (59.9% of open field, 40.1% of facility) nationwide. Water dropwort, which is rich in nutrients such as vitamins and iron, is mainly cultivated by vegetative propagation method using local traditional species, however, seed propagation and breeding of cultivars are insufficient so far. Since securing, propagating and continuous characterization of various genetic resources are required to breed new cultivars, this study was conducted to compare the main characteristics of domestic genetic resources and to improve their utilization. Growth characteristics such as plant height, fresh weight, plant type, and flowering date were investigated for the 89 varieties of genetic resources owned by Jeollabuk-do Agricultural Research and Extension Services after vegetative propagation in the individual pots. Also, the morphological image information of leaves and flowers was constructed. Genetic resources were collected nationwide and originated in 30 regions including Hwaseong, Siheung and Jeju. Their plant types could be classified into straight, intermediate and creeping types according to their morphological characteristics, and at this time, the number of intermediate types accounted for the largest proportion. Flowering was carried out under high-temperature and long-day conditions in summer. According to the flowering date, they could be classified into early, middle and late flowering varieties, and at this time, the middle flowering varieties occupied the largest proportion. As a result of the investigation of vegetative growth characteristics, varieties with long plant height, heavy fresh weight and thick stem thickness were identified. Along with this result, it is thought that classification and selection of genetic resources for various purposes will be possible through additional investigations such as analysis of components and antioxidant activity. Moreover, it is judged that such results can be used as basic data for breeding new water dropwort cultivars in the future.

  • PDF

The Water Quality and Purification Load Assessment of Drain Water of Facility Horticulture Areas (시설원예 배출 배액의 수질환경 평가 및 정화 부하량 산정)

  • Son, Jinkwan;Choi, Dekkyu;Kong, Minjae;Yun, Sungwook;Park, Minjung;Kang, Donghyeon
    • Journal of Environmental Science International
    • /
    • v.28 no.12
    • /
    • pp.1199-1208
    • /
    • 2019
  • Korea's protected horticulture is rapidly increasing in scale due to various advantages such as year-round harvesting, labor savings through automation and shortened culture period, and greater income generation. This study was conducted to investigate the impact of protected horticulture on water quality. The results of this study are expected to provide basic data contributing to improvements towards sustainable agriculture and eco-friendly design of protected horticulture complex. The average T-N and T-P loads from vinyl greenhouses were 286.55± 143.98 mg/L and 59.14±13.77 mg/L, respectively and those from glass greenhouses 380.68 ± 150.41 mg/L and 61.85±20.72 mg/L. The annual discharge of wastewater derived from the monthly discharge from the horticulture greenhouses were estimated at 2597 ton/ha, with the annual phosphorus load amounting to 155.3 kg/ha. The average T-N and T-P loads in the tested greenhouse effluents were in excess of 8.3- and 13.5-fold the standards for the Korean wastewater plant effluent. The waste nutrient solution discharged from a protected horticulture complex can cause water contamination. Therefore, there is a need to conduct follow-up research using a water purification system or a trench method to develop a eco-friendly protected horticulture complex for sustainable agriculture.