• Title/Summary/Keyword: Fabrication

Search Result 13,059, Processing Time 0.042 seconds

Design of MEMS Resonator Array for Minimization of Mode Localization Factor Subject to Random Fabrication Error (랜덤 제조 오차를 고려한 모드 편재계수를 최소화하는 반복 배열 마이크로 공진기의 최적설계)

  • Kim, Wook-Tae;Lee, Chong-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.931-938
    • /
    • 2005
  • This paper presents a robust optimal design method for a periodic structure type of MEMS resonator that is vulnerable to mode localization. The robust configuration of such a MEMS resonator to fabrication error is implemented by changing the regularity of periodic structure For the mathematical convenience, the MEMS resonator is first modeled as a multi-pendulum system. The index representing the measure of mode variation is then introduced using the perturbation method and the concept of modal assurance criterion. Finally, the optimal intentional mistuning, minimizing the expectation of the irregularity measure for each substructure, is determined for the normal distributed fabrication error and its robustness in the design of MEMS resonator to the fabrication error is demonstrated with numerical examples.

Web Service based Micro Fabrication System (웹 서비스 기반 마이크로 가공 시스템)

  • 김형중;안성훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.170-173
    • /
    • 2004
  • In this paper a web-based micro fabrication system is discussed. A commercial CAD and a web browser were used as its user interfaces. For the user interfaces, the concepts of Design for Manufacturing (DFM) were implemented providing the fabrication knowledge of micro machining to the designers. Simple databases were constructed to store the fabrication knowledge of materials, tools, and micro machining know-how. The part geometry was uploaded to the web server of this system as an STL (Stereo Lithography) format with process parameters for 3-axis micro milling. A Slice-based process planner automatically provides NC codes for controlling micro stages. A couple of micro parts were fabricated using the system with micro endmills. This design and manufacturing system enables network users to obtain micro-scale prototypes in a rapid manner.

  • PDF

Geometric Modeling of Honeycomb Structural Geometry for Solid Freeform Fabrication (신속성형기술 전용 벌집구조 형상 모델링 기술 개발)

  • 지해성
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.3
    • /
    • pp.180-189
    • /
    • 1999
  • Solid freeform fabrication technology, widely known as rapid prototyping an rapid tooling, can create physical part directly from digital model by accumulating layers of a given material. Providing a tremendous flexibility of a part geometry that they can fabricate, these technologies present a opportunity or the creation of new products that can not be made with existing technologies. For this to be possible, however, various design environments including different fabrication processes needs to be considered at the time of design, and finding an appropriate design solution for the new product by combining necessary design communications become increasingly complex as environmental condition become diverse. This paper proposes a geometric modeling paradigm for design and fabrication of a new product, honeycomb structural geometry.

  • PDF

New Barrier Rib Forming Method for PDP Fabrication

  • Kim, I.T.;Cho, C.R.;Koo, B.J.;Lee, S.H.;Kong, S.S.;Kim, W.B.;Mun, J.D.;Hwang, K.T.;Kim, J.D.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.351-355
    • /
    • 2003
  • In this paper, a new barrier rib forming method of embossed barrier rib (EBR) formation process for the PDP rear panel was introduced. The process is mainly composed of green sheet fabrication, lamination of the green sheet on the rear glass panel having data electrodes, and roll embossing followed by firing. The EBR process has two advantages over the conventional barrier rib forming methods. One is the process requires less equipment investment than the conventional methods by about 20% of the current rear panel fabrication equipment investment owing to the simplified fabrication process. The other advantage is its reduced rear panel manufacturing cost by eliminating the time consuming and complicated processes and waste of materials in the conventional methods. In this study, general procedure of EBR fabrication process is described and the characteristics of prototype PDP using EBR panel are discussed.

  • PDF

Development of the Fabrication Technology of High Tc Superconductor for Electrical Energy Storage (전기 에너지 저장을 위한 초전도 나노 합성 기술)

  • Lee, Sang-Heon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.9
    • /
    • pp.442-445
    • /
    • 2006
  • In order to realize the commercial application of HTSC materials, it is necessary to develop the fabrication process of high Tc oxide superconductor materials with desired shape and for practical application and high critical current density as well as good mechanical strength which can withstand high lorenz force generated at high magnetic field. Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of HTSC materials at liquid nitrogen temperature. Recently some new fabrication techniques have been developed for YBaCuO bulk superconductor with high mechanical strength and critical current density. In this project, the establishment of fabrication condition and additive effects of second elements were examined so as to improve the related properties to the practical use of YBaCuO superconductor, and we reported the production of the YBaCuO high Tc superconductor by the pyrolysis method.

Robust Optimal Design of a Decoupled Vibratory Microgyroscope Considering Fabrication Influence (공정영향을 고려한 비연성 진동형 마이크로 자이로스코프의 강건 최적 설계)

  • Jeong Hee-Moon;Ha Sung Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1065-1074
    • /
    • 2004
  • A robust optimal design considering fabrication influence has been performed for the decoupled vibratory microgyroscope fabricated by the bulk micromachining. For the analysis of the gyroscope, a design tool has been developed, by which user can perform the system level design considering electric signal process and the fabrication influence as well as mechanical characteristics. An initial design of the gyroscope is performed satisfying the performances of scale factor (or sensitivity) and phase delay, which depend on the frequency difference between driving and sensing resonant frequencies. The objective functions are formulated in order to reduce the variances of the frequency difference and the frequency in itself by fabrication error. To certify the results, the standard deviations are calculated through the Monte Caries Simulation (MCS) and compared initial deviation that is measured fabricated gyroscope chip.

Fabrication Technology of high Tc Superconductor for Electrical Equipment (전력기기 초전도 합성기술)

  • Lee, Sang-Heon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.7
    • /
    • pp.364-366
    • /
    • 2006
  • In order to realize the commercial application of HTSC materials, it is necessary to develop the fabrication process of high Tc oxide superconductor materials with desired shape and for practical application and high critical current density as well as good mechanical strength which can withstand high lorenz force generated at high magnetic field. Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of HTSC materials at liquid nitrogen temperature. Recently some new fabrication techniques have been developed for YBaCuO bulk superconductor with high mechanical strength and critical current density. In this project, the establishment of fabrication condition and additive effects of second elements were examined so as to improve the related properties to the practical use of YBaCuO superconductor, and we reported the production of the YBaCuO high Tc superconductor by the pyrolysis method.

Fabrication and Realization of Three-Electrode Type Color Reflective Display (3전극형 반사형 컬러 디스플레이의 제작 및 구현)

  • Shin, Yong-Kwan;Kim, Young-Cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.1
    • /
    • pp.21-27
    • /
    • 2015
  • We propose a fabrication process of a 3-electrode type reflective display and ascertain the realized color panel. The first design is proceeded with basis on Ti electrode for fast panel fabrication, easy align process, and high reflection of a white image. To observe the particle movement at the lower electrodes and optimize the space between electrodes, we design the second patterns, from which we establish a fabrication process with the mixing of electronic ink, loading of this ink, electronic ink assembly, driving, and packaging. After aging process, we ascertain a normally driving panel with black, white, and blue color.

Fabrication of Al 6061 Foamable Precursor by Powder Metallurgical and Induction Heating Method (P/M법과 유도가열 공정을 이용한 발포용 6061 Al 합금 프리커서 제조)

  • 윤성원;강충길
    • Transactions of Materials Processing
    • /
    • v.12 no.5
    • /
    • pp.457-464
    • /
    • 2003
  • In the powder compact melting technique, proper precursor fabrication is very important because density distribution after foaming and foamability are determined during precursor fabrication process. The fabrication of the precursor has to be performed very carefully because any residual porosity or other defects will lead to poor results in further processing. In order to evaluate the effect of the compaction parameters on the kinetics of the foaming process, a series of experiments were performed. In this study, aluminium foams with a closed cell structure were fabricated by using both the powder compact method and the induction heating process. A proper induction coil was designed to obtain a uniform temperature distribution over the entire cross sectional area of precursor. To establish the foamable precursor fabrication conditions, effects of process parameters such as the titanium hydride content (0.3∼1.5 wt.%), pressing pressure of the foamable precursor (50∼150kN) on the pore morphology were investigated.

Bay and Machine Selection for the Parts Fabrication of Ship Hull Construction (조선 선각가공공정에서 부재가공을 위한 Bay 및 가공기계의 선택)

  • Park, Chang-Kyu;Seo, Yoon-Ho
    • IE interfaces
    • /
    • v.12 no.3
    • /
    • pp.395-400
    • /
    • 1999
  • Shipbuilding process is composed of hull construction, in which the structural body of a ship is formed, and outfitting, in which all the non-structural parts such as pipes, derricks, engines, machinery, electrical cable, etc. are manufactured, added and assembled. Hull construction can be classified into parts fabrication, block assembly and hull erection. Among them, the parts fabrication is the first manufacturing stage that produces components or zones needed for block assembly and hull construction. More specifically, the parts fabrication is performed through machining processes including marking, cutting, pressing, and/or forming. When material is entering into the parts fabrication stage, it is important for achieving the total efficiency of production to select one of production division, so-called 'bay,' as well as machine tools on which the part is fabricated. In this paper, given production quantities of parts in the fabrication stage, the problem is to optimally select machine tools and production division, such that the total flow-time is minimized as well as the workload among machines is balanced. Specifically, three mathematical models for flow-time minimization, load balance, and simultaneously considering both objectives, and a numerical example are analyzed and presented.

  • PDF