• 제목/요약/키워드: Fabrication

검색결과 13,072건 처리시간 0.041초

이온빔을 이용한 마이크로/나노 가공: 형상가공 (Ion Beam Induced Micro/Nano Fabrication: Shape Fabrication)

  • 김흥배
    • 한국정밀공학회지
    • /
    • 제24권10호
    • /
    • pp.109-116
    • /
    • 2007
  • Focused ion beams are a potential tool for micro/nano structure fabrication while several problems still have to be overcome. Redeposition of sputtered atoms limits the accurate fabrication of micro/nano structures. The challenge lies in accurately controlling the focused ion beam to fabricate various arbitrary curved shapes. In this paper a basic approach for the focused ion beam induced direct fabricate of fundamental features is presented. This approach is based on the topography simulation which naturally considers the redeposition of sputtered atoms and sputtered yield changes. Fundamental features such as trapezoidal, circular and triangular were fabricated with this approach using single or multiple pass box milling. The beam diameter(FWHM) and maximum current density are 68 nm and $0.8 A/cm^2$, respectively. The experimental investigations show that the fabricated shape is well suited for the pre-designed fundamental features. The characteristics of ion beam induced direct fabrication and shape formation will be discussed.

2축 정전부양형 MEMS 자이로스코프의 향상된 제작 공정 개발 (Development of Improved Fabrication Methods for 2-axis Electrically Levitated MEMS Gyroscope)

  • 석세영;임근배
    • 센서학회지
    • /
    • 제24권4호
    • /
    • pp.274-279
    • /
    • 2015
  • This paper describes optimizing fabrication methods for 2-axis electrically levitated MEMS gyroscope. Electrostatically levitated gyroscope has very high potential of performance due to the fact that its proof mass is not mechanically bound to any other structures, but its complex structure and difficulty of fabrication holds back the research that only a few researches have been reported. In this work, fabrication method for glass-silicon-glass 3-floor structure for 2-axis electrically levitated MEMS gyroscope is presented, including simplified multi-level glass etch method utilizing photoresist attack, preventing metal diffusion by adding middle layer of metal electrode, overcoming Deep RIE limitation by separate fabrication of silicon structures and keeping the electrode safe from dicing debris.

자유 형상 제작 기술 및 이의 조직 공학 적용 (Solid freeform fabrication and its application to tissue engineering)

  • 강현욱;이진우;김종영;조동우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1415-1418
    • /
    • 2008
  • Scaffold fabrication for regenerating functional human tissues has an important role in tissue engineering, and there has been much progress in research on scaffold fabrication. However, current methods are limited by the mechanical properties of existing biodegradable materials and the irregular structures that they produce. Recently, Solid freeform fabrication (SFF) technology was remarked by fabricating 3D free-form micro-structures. Among SFF technologies, we tried to fabricate scaffolds using micro-stereolithography which contain the highest resolution of all SFF technologies and precision deposition system which can use various biomaterials. And we developed the CAD/CAM system to automate the process of scaffold fabrication and fabricate the patient customized scaffolds. These results showed the unlimited possibilities of our SFF technologies in tissue engineering.

  • PDF

Fabrication of Colloid Thrusters using MEMS Technology

  • Park, Kun Joong;Song, Seung Jin;Sanchez, Manuel Martinez
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.588-592
    • /
    • 2004
  • This paper presents the preliminary fabrication results of colloid thrusters which can provide thrust of the order of micro to milli-Newtons. MEMS technology has been used for fabrication, and four essential fabrication techniques - deep etching with nested masks, isotropic plasma etching, anisotropic reactive ion etching, and direct fusion wafer bonding - have been newly developed. Among diverse models which have been designed and fabricated, the fabrication results of 4-inch wafer-based colloid thrusters are presented.

  • PDF

비정형 건축물 구현을 위한 Digital Fabrication의 활용방법 연구 -롯데월드타워 3D 포디움 시공사례- (Study of Freeform Buildings using the Digital Fabrication)

  • 김성진;박영미;박정준
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 추계 학술논문 발표대회
    • /
    • pp.52-53
    • /
    • 2017
  • Through the case study, we surveyed an applicability of digital fabrication in irregular-shaped building construction project. By digital fabrication, we mean is a precision manufacturing method has been used in aircraft, ship and car manufacturing industry. We collected construction-completed "LotteWorld Tower Podium" project data and analyzed its process in terms of construction quality andduration. The result shows that digital fabrication is considered a competitive technology that enabled to complete the project in seven months within 3mm surface curvature threshold. The digitalfabrication is expected to apply on a number of irregular-shaped building construction project.

  • PDF

Demonstration of Alternative Fabrication Techniques for Robust MEMS Device

  • Chang, Sung-Pil;Park, Je-Young;Cha, Doo-Yeol;Lee, Heung-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • 제7권4호
    • /
    • pp.184-188
    • /
    • 2006
  • This work describes efforts in the fabrication and testing of robust microelectromechanical systems (MEMS). Robustness is typically achieved by investigating non-silicon substrates and materials for MEMS fabrication. Some of the traditional MEMS fabrication techniques are applicable to robust MEMS, while other techniques are drawn from other technology areas, such as electronic packaging. The fabrication technologies appropriate for robust MEMS are illustrated through laminated polymer membrane based pressure sensor arrays. Each array uses a stainless steel substrate, a laminated polymer film as a suspended movable plate, and a fixed, surface micromachined back electrode of electroplated nickel. Over an applied pressure range from 0 to 34 kPa, the net capacitance change was approximately 0.14 pF. An important attribute of this design is that only the steel substrate and the pressure sensor inlet is exposed to the flow; i.e., the sensor is self-packaged.

소실모형주조법에 의한 내마모 복합조직층 형성에 미치는 공정인자의 영향 (Effects of Parameters on Abrasion-Resistant Layer of Composite Structure Formed by Evaporation Pattern Casting)

  • 최창영;모남규;김건호;윤종천;정유현;김동혁;최용진;이인규;조용재
    • 한국기계가공학회지
    • /
    • 제17권2호
    • /
    • pp.89-94
    • /
    • 2018
  • Due to industrial advancement and environmental concerns, there is a demand for light-weight material parts with high-performance characteristics. In order to meet this demand, various studies have been conducted on developing high-performance castings to achieve composite features by coating only specific parts that require high performance, with dissimilar joining, rather than coating the entire material part. This study analyzed the possibility of forming a local composite layer on an aluminum alloy through evaporation pattern casting, and the effects of parameters on the aluminum alloy.

경사 LIGA 공정을 이용한 미세 바늘 어레이의 제작 (Fabrication of Microneedle Array Using Inclined LIGA Process)

  • 문상준;이승섭
    • 대한기계학회논문집A
    • /
    • 제28권12호
    • /
    • pp.1871-1876
    • /
    • 2004
  • We demonstrate a novel fabrication technology for the microneedle array that can be used in the medical test field, which is transdermal drug delivery and blood analyte sampling. Previous researchers have used silicon-processed micromachining, a reactive ion etching, and molding techniques for the fabrication of microneedle array. However, these fabrication techniques have somewhat limitations apply to the microneedle array fabrication according to its application. Inclined LIGA process is suggested to overcome these problems. This process provides easier, sharper and longer out-of-plane microneedle array structure than conventional silicon-processed fabrication method did. Additionally, because of the advantage of the LIGA process based on mold fabrication for mass production, the polymer, PMMA(PolyMethylMethAcrylate), based microneedle array is useful as the mold base of nickel electroplating process; on the other hand, silicon-processed microneedle array is used in itself. In this research, we fabricate different types of out-of-plane microneedle array, which have different shape of tip, base and hole structure, using the inclined LIGA process. The fabricated microneedles have proper mechanical strength, height and sharpness to puncture human hand epidermis or dermis with less pain and without needle tip break during penetrating the skin.

차세대 반도체 펩을 위한 육각형 물류 구조의 설계 (Hexagonal Material Flow Pattern for Next Generation Semiconductor Fabrication)

  • 정재우;서정대
    • 대한산업공학회지
    • /
    • 제36권1호
    • /
    • pp.42-51
    • /
    • 2010
  • The semiconductor industry is highly capital and technology intensive. Technology advancement on circuit design and process improvement requires chip makers continuously to invest a new fabrication facility that costs more than 3 billion US dollars. Especially major semiconductor companies recently started to discuss 450mm fabrication substituting existing 300mm fabrication of which facilities were initiated to build in 1998. If the plan is consolidated, the yield of 450mm facility would be more than doubled compared to existing 300mm facility. In steps of this important investment, facility layout has been acknowledged as one of the most important factors to be competitive in the market. This research proposes a new concept of semiconductor facility layout using hexagonal floor plan and its compatible material flow pattern. The main objective of this proposal is to improve the productivity of the unified layout that has been popularly used to build existing facilities. In this research, practical characteristics of the semiconductor fabrication are taken into account to develop a new layout alternative based on the analysis of Chung and Tanchoco (2009). The performance of the proposed layout alternative is analyzed using computer simulation and the results show that the new layout alternative outperforms the existing layout alternative, unified layout. However, a few questions on space efficiency to the new alternative were raised in communication with industry practitioners. These questions are left for a future study.

제조공정 오차보상용 보정 탄성체를 이용한고정도 디지털-아날로그 구동기 (High-Accuracy Digital-to-Analog Actuators Using Load Springs Compensating Fabrication Errors)

  • 한원;이원철;조영호
    • 대한기계학회논문집A
    • /
    • 제32권10호
    • /
    • pp.823-830
    • /
    • 2008
  • We present a high-accuracy digital-to-analog (DA) actuator using a load spring, specially designed to compensate the output displacement errors caused by fabrication errors. The compensated linear DA actuator is capable to change the slope of input-output modulation line in order to compensate fabrication errors. We design, fabricate, and characterize three different prototypes: one uncompensated design and two compensated designs respectively for a specific value and for a given range of fabrication error. The compensated linear DA actuators show the output displacement errors of $-0.20{\pm}0.23{\mu}m\;and\;-0.13{\pm}0.18{\mu}m$, respectively, reduced by 64.3% and 76.8% of the output displacement error, $0.56{\pm}0.20{\mu}m$, produced by the conventional uncompensated linear DA actuator. We experimentally verify the fabrication error compensation capability of the present compensated linear DA actuators, thus demonstrating high-accuracy actuation performance immune to fabrication errors.