Browse > Article
http://dx.doi.org/10.3795/KSME-A.2008.32.10.823

High-Accuracy Digital-to-Analog Actuators Using Load Springs Compensating Fabrication Errors  

Han, Won (한국과학기술원 바이오 및 뇌공학과, 디지털나노구동연구단)
Lee, Won-Chul (한국과학기술원 바이오 및 뇌공학과, 디지털나노구동연구단)
Cho, Young-Ho (한국과학기술원 바이오및뇌공학과 및 기계공학과, 디지털나노구동연구단)
Publication Information
Transactions of the Korean Society of Mechanical Engineers A / v.32, no.10, 2008 , pp. 823-830 More about this Journal
Abstract
We present a high-accuracy digital-to-analog (DA) actuator using a load spring, specially designed to compensate the output displacement errors caused by fabrication errors. The compensated linear DA actuator is capable to change the slope of input-output modulation line in order to compensate fabrication errors. We design, fabricate, and characterize three different prototypes: one uncompensated design and two compensated designs respectively for a specific value and for a given range of fabrication error. The compensated linear DA actuators show the output displacement errors of $-0.20{\pm}0.23{\mu}m\;and\;-0.13{\pm}0.18{\mu}m$, respectively, reduced by 64.3% and 76.8% of the output displacement error, $0.56{\pm}0.20{\mu}m$, produced by the conventional uncompensated linear DA actuator. We experimentally verify the fabrication error compensation capability of the present compensated linear DA actuators, thus demonstrating high-accuracy actuation performance immune to fabrication errors.
Keywords
Digital-to-Analog Actuator; Fabrication Error Compensation; High-Accuracy Actuation;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Hong, Y. S., Lee, J. H. and Kim, S. H., 2000, "A Laterally Driven Symmetric Micro-Resonator for Gyroscopic Applications," J. Micromech. Microeng., Vol. 10, pp. 452-458   DOI   ScienceOn
2 Lee, W. C., Jin, Y.-H. and Cho, Y.-H., 2002, "Nonliearly Modulated Digital Microactuators for Nano-Precisioin Digital Motion Generation," in Proc. 15th Int. Conf. IEEE MEMS, pp. 594-597
3 Wittwer, J. W., Baker, M. S. and Howell, L. L., 2006, "Robust Design and Model Validation of Nonlinear Compliant Micromechanisms," J. Microelectromech. Syst., Vol. 15, pp. 33-41   DOI   ScienceOn
4 Li, J., Liu, A.Q., Zhong, W. D., Zhang, Q. X. and Lu, C., 2004, "MEMS Switch Based Serial Reconfigurable OADM," Optics Communications, Vol. 230, pp. 81-89   DOI   ScienceOn
5 Imamura, T., Katayama, M., Ikegawa, Y., Ohwe, T., Koishi, R. and Koshikawa, T., 1998, "MEMS-Based Integrated Head/Actuator/Slider for Hard Disk Drives," IEEE/ASME Transactions on Mechatronics, Vol. 3, pp. 166-174   DOI   ScienceOn
6 Wu, M. C., 1997, "Micromachining for Optical and Optoelectronic Systems," Proceedings of the IEEE, Vol. 85, pp. 1833-1856   DOI   ScienceOn
7 Koganezawa, S., Unematsu, Y. and Yamada, T., 1999, "Dual-Stage Actuator System for Magnetic Disk Drives Using a Shear Mode Piezoelectric Microactuator," IEEE Transactions on Magnetics, Vol. 35, pp. 988-992   DOI   ScienceOn
8 Yeh, R., Conant, R. A. and Pister, K. S., 1999, "Mechanical Digital-to-Analog Converters," in Proc. 10th Int. Conf. Solid-State Sensors and Actuators (Transducers'99), pp. 198-1001
9 Grade, J. D., Jerman, H. and Kenny, T. W., 2003, “Design of Large Deflection Electrostatic Actuators,” J. Microelectromech. Syst., Vol. 12, pp. 335-343   DOI   ScienceOn
10 Jerman, J. H., Grade, J. D. and Drake, J. D., 1999, "Electrostatic Microactuator and Method for Use Thereof," U. S. Patent 5998906
11 Ogata, K., 1998, System Dynamics. New Jersey: Prentice Hall, pp. 373-374
12 Hagelin, P. M. and Solgaard, O., 1999, "Optical Raster-Scanning Displays Based on Surface-Micromachined Polysilicon Mirrors," IEEE J. Quantum Electron., Vol. 5, pp. 67-74   DOI   ScienceOn
13 Toshiyoshi, H., Kobayashi, D., Mita, M., Hashiguchi, G., Fujita, H., Endo, J. and Wada, Y., 2000, "Microelectromechanical Digital-to-Analog Converters of Displacement for Step Motion Actuators," J. Microelectromech. Syst., Vol. 9, pp. 218-225   DOI   ScienceOn
14 Liu, R., Paden, B. and Turner, K., 2002, "MEMS Resonators that are Robust to Process-Induced Feature Width Variations," J. Microelectromech. Syst., Vol. 11, pp. 505-511   DOI   ScienceOn