• Title/Summary/Keyword: FTL(Flash-memory Translation Layer)

Search Result 67, Processing Time 0.029 seconds

A Cross Layer Optimization Technique for Improving Performance of MLC NAND Flash-Based Storages (MLC 낸드 플래시 기반 저장장치의 쓰기 성능 개선을 위한 계층 교차적 최적화 기법)

  • Park, Jisung;Lee, Sungjin;Kim, Jihong
    • Journal of KIISE
    • /
    • v.44 no.11
    • /
    • pp.1130-1137
    • /
    • 2017
  • The multi-leveling technique that stores multiple bits in a single memory cell has significantly improved the density of NAND flash memory along with shrinking processes. However, because of the side effects of the multi-leveling technique, the average write performance of MLC NAND flash memory is degraded more than twice that of SLC NAND flash memory. In this paper, we introduce existing cross-layer optimization techniques proposed to improve the performance of MLC NAND flash-based storages, and propose a new integration technique that overcomes the limitations of existing techniques by exploiting their complementarity. By fully exploiting the performance asymmetry in MLC NAND flash devices at the flash translation layer, the proposed technique can handle many write requests with the performance of SLC NAND flash devices, thus significantly improving the performance of NAND flash-based storages. Experimental results show that the proposed technique improves performance 39% on average over individual techniques.

Performance Analysis of FTL Algorithms in Flash Memory for Windows File Systems (윈도우즈(Windows) 파일 시스템에서 플래시 메모리의 FTL(Flash Translation Layer) 알고리즘 성능 분석)

  • Park Won-Joo;Yoo Hyun-Seok;Park Sung-Hwan;Kim Do-Yun;Park Sangwon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07a
    • /
    • pp.823-825
    • /
    • 2005
  • 이동 기기의 저장장치로 널리 사용되고 있는 플래시 메모리는 하드웨어적 특성으로 인하여 쓰기 전 소거(erase before write) 기법이 사용되고 있다. 이러한 특성으로 인하여 플래시 메모리에서는 성능을 증진시키기 위한 기법이 필요하게 되었으며, 이러한 소프트웨어 모듈을 FTL이라 한다. 플래시 메모리의 용량이 크게 늘어나면서 디스크를 대체할 제품이 등장하고 있으며, 이러한 디스크가 일반 컴퓨터에서의 저장장치로 채택되는 경우가 많아지고 있다. 본 연구에서는 플래시 메모리 기반의 디스크를 이용한 윈도우 파일 시스템에서의 여러 FTL 알고리즘의 성능을 분석, 비교하고, FTL 알고리즘의 올바른 개선 방향을 제시한다.

  • PDF

AFTL: An Efficient Adaptive Flash Translation Layer using Hot Data Identifier for NAND Flash Memory (AFTL: Hot Data 검출기를 이용한 적응형 플래시 전환 계층)

  • Yun, Hyun-Sik;Joo, Young-Do;Lee, Dong-Ho
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.1
    • /
    • pp.18-29
    • /
    • 2008
  • NAND Flash memory has been growing popular storage device for the last years because of its low power consumption, fast access speed, shock resistance and light weight properties. However, it has the distinct characteristics such as erase-before-write architecture, asymmetric read/write/erase speed, and the limitation on the number of erasure per block. Due to these limitations, various Flash Translation Layers (FTLs) have been proposed to effectively use NAND flash memory. The systems that adopted the conventional FTL may result in severe performance degradation by the hot data which are frequently requested data for overwrite in the same logical address. In this paper, we propose a novel FTL algorithm called Adaptive Flash Translation Layer (AFTL) which uses sector mapping method for hot data and log-based block mapping method for cold data. Our system removes the redundant write operations and the erase operations by the separating hot data from cold data. Moreover, the read performance is enhanced according to sector translation that tends to use a few read operations. A series of experiments was organized to inspect the performance of the proposed method, and they show very impressive results.

Managing the B-Tree Efficiently using Write Pattern Conversion on NAND Flash Memory (낸드 플래시 메모리상에서 쓰기 패턴 변환을 이용한 효율적인 B-트리 관리)

  • Choi, Hae-Gi;Park, Dong-Joo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.69-74
    • /
    • 2007
  • 플래시 메모리는 하드디스크와 다른 물리적 특성을 가지고 있다. 대표적으로 덮어쓰기가 되지 않고 데이터를 읽고 쓰는 단위와 지우는 단위가 서로 다르다. 이러한 물리적 제약을 소프트웨어적으로 보완해주기 위해서 플래시 메모리를 사용하는 시스템에서는 대부분 Flash Translation Layer (FTL)을 사용한다. 지금까지 FTL 알고리즘의 대부분이 임의 쓰기 패턴보다 순차 쓰기 패턴에 훨씬 더 효율적으로 작용한다. 그러나 B-트리와 같은 자료구조에서는 일반적으로 순차 쓰기 패턴 보다는 임의 쓰기 패턴이 발생된다. 따라서 플래시 메모리상에서 B-트리를 관리할 경우 FTL에 비효율적인 쓰기 패턴을 생성하게 된다. 본 논문에서는 플래시 메모리상에서 B-트리와 같은 자료구조를 효율적으로 저장 관리하기 위한 새로운 방식을 제안한다. 새로운 방식은 B-트리에서 발생되는 임의 쓰기를 플래시 메모리상의 버퍼를 이용하여 FTL에 효율적인 순차 쓰기를 발생시킨다. 실험 결과, 본 논문에서 제안하는 방식은 기존의 방식보다 플래시 메모리에서 발생되는 쓰기 및 블록소거 연산 횟수를 60%이상 감소시킨다.

  • PDF

Duplication-Aware Garbage Collection for Flash Memory-Based Virtual Memory Systems (플래시 메모리 기반의 가상 메모리 시스템을 위한 중복성을 고려한 GC 기법)

  • Ji, Seung-Gu;Shin, Dong-Kun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.3
    • /
    • pp.161-171
    • /
    • 2010
  • As embedded systems adopt monolithic kernels, NAND flash memory is used for swap space of virtual memory systems. While flash memory has the advantages of low-power consumption, shock-resistance and non-volatility, it requires garbage collections due to its erase-before-write characteristic. The efficiency of garbage collection scheme largely affects the performance of flash memory. This paper proposes a novel garbage collection technique which exploits data redundancy between the main memory and flash memory in flash memory-based virtual memory systems. The proposed scheme takes the locality of data into consideration to minimize the garbage collection overhead. Experimental results demonstrate that the proposed garbage collection scheme improves performance by 37% on average compared to previous schemes.

Janus-FTL Adjusting the Size of Page and Block Mapping Areas using Reference Pattern (참조 패턴에 따라 페이지 및 블록 사상 영역의 크기를 조절하는 Janus-FTL)

  • Kwon, Hun-Ki;Kim, Eun-Sam;Choi, Jong-Moo;Lee, Dong-Hee;Noh, Sam-H.
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.12
    • /
    • pp.918-922
    • /
    • 2009
  • Naturally, block mapping FTL works well for sequential writes while page mapping FTL does well for random writes. To exploit their advantages, a practical FTL should be able to selectively apply a suitable scheme between page and block mappings for each write pattern. To meet that requirement, we propose a hybrid mapping FTL, which we call Janus-FTL, that distributes data to either block or page mapping areas. Also, we propose the fusion operation to relocate the data from block mapping area to page mapping area and the defusion operation to relocate the data from page mapping area to block mapping area. And experimental results of Janus-FTL show performance improvement of maximum 50% than other hybrid mapping FTLs.

Adaptive Mapping Information Management Scheme for High Performance Large Sale Flash Memory Storages (고성능 대용량 플래시 메모리 저장장치의 효과적인 매핑정보 캐싱을 위한 적응적 매핑정보 관리기법)

  • Lee, Yongju;Kim, Hyunwoo;Kim, Huijeong;Huh, Taeyeong;Jung, Sanghyuk;Song, Yong Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.78-87
    • /
    • 2013
  • NAND flash memory has been widely used as a storage medium in mobile devices, PCs, and workstations due to its advantages such as low power consumption, high performance, and random accessability compared to a hard disk drive. However, NAND flash cannot support in-place update so that it is mandatory to erase the entire block before overwriting the corresponding page. In order to overcome this drawback, flash storages need a software support, named Flash Translation Layer. However, as the high performance mass NAND flash memory is getting widely used, the size of mapping tables is increasing more than the limited DRAM size. In this paper, we propose an adaptive mapping information caching algorithm based on page mapping to solve this DRAM space shortage problem. Our algorithm uses a mapping information caching scheme which minimize the flash memory access frequency based on the analysis of several workloads. The experimental results show that the proposed algorithm can increase the performance by up to 70% comparing with the previous mapping information caching algorithm.

Applying In-Page Logging to SQLite DBMS (SQLite DBMS에 IPL 기법 응용)

  • Na, Gap-Joo;Kim, Sang-Woo;Kim, Jae-Myung;Lee, Sang-Won
    • Journal of KIISE:Databases
    • /
    • v.35 no.5
    • /
    • pp.400-410
    • /
    • 2008
  • Flash memory has been widely used in mobile devices, such as mobile phone and digital camera. Recently flash SSD(Solid State Disk), having same interface of the disk drive, is replacing the hard disk of some laptop computers. However, flash memory still cannot be considered as the storage of database systems. The FTL(Flash Translation Layer) of commercial flash SSD, making flash memory operate exactly same as a hard disk, shows poor performance on the workload of databases with many random overwrites. Recently In-Page Logging(IPL) approach was proposed to solve this problem. In this paper, we implement IPL approach on SQLite, a popular open source embedded DBMS, and evaluate its performance. It improves the performance by up to 30 factors for update queries.

Performance Evaluation of Flash Memory-Based File Storages: NAND vs. NOR (플래시 메모리 기반의 파일 저장 장치에 대한 성능분석)

  • Sung, Min-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.710-716
    • /
    • 2008
  • This paper covers the performance evaluation of two flash memory-based file storages, NAND and NOR, which are the major flash types. To evaluate their performances, we set up separate file storages for the two types of flash memories on a PocketPC-based experimental platform. Using the platform, we measured and compared the I/O throughputs in terms of buffer size, amount of used space, and kernel-level write caching. According to the results from our experiments, the overall performance of the NAND-based storage is higher than that of NOR by up to 4.8 and 5.7 times in write and read throughputs, respectively. The experimental results show the relative strengths and weaknesses of the two schemes and provide insights which we believe assist in the design of flash memory-based file storages.

Considerations for Designing an Integrated Write Buffer Management Scheme for NAND-based Solid State Drives (SSD를 위한 쓰기 버퍼와 로그 블록의 통합 관리 고려사항)

  • Park, Sungmin;Kang, Sooyong
    • Journal of Digital Contents Society
    • /
    • v.14 no.2
    • /
    • pp.215-222
    • /
    • 2013
  • NAND flash memory-based Solid State Drives (SSD) have lots of merits compared to traditional hard disk drives (HDD). However, random write in SSD is still far slower than sequential read/write and random read. There are two independent approaches to resolve this problem: 1) using part of the flash memory blocks as log blocks, and 2) using internal write buffer (DRAM or Non-Volatile RAM) in SSD. While log blocks are managed by the Flash Translation Layer (FTL), write buffer management has been treated separately from FTL. Write buffer management schemes did not use the exact status of log blocks and log block management schemes in FTL did not consider the behavior of write buffer management scheme. In this paper, we first show that log blocks and write buffer have a tight relationship to each other, which necessitates integrated management of both of them. Since log blocks also can be viewed as another type of write buffer, we can manage both of them as an integrated write buffer. Then we provide three design criteria for the integrated write buffer management scheme which can be very useful to SSD firmware designers.