• Title/Summary/Keyword: FSI analysis

검색결과 272건 처리시간 0.026초

고압 피스톤 펌프용 슬리퍼 베어링의 변형 특성에 관한 연구 (A Study on the Deformation Characteristics of a Slipper Bearing for High Pressure Piston Pump)

  • 고성위;김병탁
    • 한국해양공학회지
    • /
    • 제23권5호
    • /
    • pp.39-44
    • /
    • 2009
  • The hydrostatic slipper bearing is generally used in high pressure axial piston pumps to support the load generated from two surfaces which are sliding relatively at low speed. The object of the bearing is to remove the possibility of direct contact by maintenance of an adequate oil film thickness between two metal surfaces. Because the bearing performance is influenced by the bearing deformation, it is highly dependent on the injection pressure, the bearing surface profile and so on. In this study, the deformation characteristics of a hydrostatic slipper bearing is investigated according to the injection pressure by the finite element analysis. In the analysis, the special boundary condition to take the fluid-structure interaction (FSI) into account is used on the interactive surface. The results, such as bearing deformation, stress and lifting force, obtained from the fully coupled analysis are compared with those from the single step sequential method.

Degradation analysis of horizontal steam generator tube bundles through crack growth due to two-phase flow induced vibration

  • Amir Hossein Kamalinia;Ataollah Rabiee
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4561-4569
    • /
    • 2023
  • A correct understanding of vibration-based degradation is crucial from the standpoint of maintenance for Steam Generators (SG) as crucial mechanical equipment in nuclear power plants. This study has established a novel approach to developing a model for investigating tube bundle degradation according to crack growth caused by two-phase Flow-Induced Vibration (FIV). An important step in the approach is to calculate the two-phase flow field parameters between the SG tube bundles in various zones using the porous media model to determine the velocity and vapor volume fraction. Afterward, to determine the vibration properties of the tube bundles, the Fluid-Solid Interaction (FSI) analysis is performed in eighteen thermal-hydraulic zones. Tube bundle degradation based on crack growth using the sixteen most probable initial cracks and within each SG thermal-hydraulic zone is performed to calculate useful lifetime. Large Eddy Simulation (LES) model, Paris law, and Wiener process model are considered to model the turbulent crossflow around the tube bundles, simulation of elliptical crack growth due to the vibration characteristics, and estimation of SG tube bundles degradation, respectively. The analysis shows that the tube deforms most noticeably in the zone with the highest velocity. As a result, cracks propagate more quickly in the tube with a higher height. In all simulations based on different initial crack sizes, it was observed that zone 16 experiences the greatest deformation and, subsequently, the fastest degradation, with a velocity and vapor volume fraction of 0.5 m/s and 0.4, respectively.

변절점 요소를 이용한 유체-고체 상호작용문제의 해석 (The Analysis of Fluid-Solid Interaction Problem by Using Variable-node Element)

  • 강용수;손동우;김현규;임세영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2009년도 정기 학술대회
    • /
    • pp.59-62
    • /
    • 2009
  • 유체-고체 상호작용(FSI)은 산업전반에서 꼭 필요한 분야이면서도 쉽게 접근하기가 어려운 전산역학 분야의 난제 중 하나이다. 유체-고체 상호작용의 전산해석에서 유체와 고체 사이의 불일치 격자망을 어떻게 처리하는가는 매우 어렵고 민감한 부분이 된다. 운동학적 연속성과 계면을 따른 응력의 평형을 추적하기 위해 유체와 고체의 계면에서는 각각의 영역에서 해석된 물리량들을 다른 영역으로 정확히 전달해야 하는데 대부분의 유체-고체 상호작용의 문제들은 불일치 격자를 가지고 있기 때문에 불일치 격자망을 효과적으로 처리하는 수단이 필요하다. 그래서 넓은 분야에 걸쳐 적용 가능한 유체 고체 상호작용 문제에 대한 효과적인 해석방법의 제안이 큰 의미를 갖는다고 생각한다. 따라서 본 연구에서는 유체-고체 계면의 운동을 이동최소제곱 기반의 변절점 요소를 사용하여 모사함으로써 2차원 유체-고체의 상호작용(FSI)을 위한 새로운 접근방법을 제시하였다.

  • PDF

유압유 점도가 액추에이터 성능에 미치는 영향 (Effects of Viscosity of Hydraulic Oil on the Performance of Actuator)

  • 김진형;한수민;김윤제
    • 한국유체기계학회 논문집
    • /
    • 제19권1호
    • /
    • pp.31-36
    • /
    • 2016
  • Hydraulic actuator is a primary component of the hydraulic valve systems. In this study, the thrust performance of hydraulic actuator was studied with different values of viscosity of hydraulic oil and rod diameter. Numerical analysis was performed using the commercial CFD code, ANSYS with 2-way FSI(Fluid-Structure Interaction) method and $k-{\varepsilon}$ turbulent model. Results show that increase in viscosity of hydraulic oil reduces the thrust of hydraulic actuator. In order to satisfy the output required of the actuator, it is necessary to compensate for the operating pressure. The results of pressure, velocity and thrust efficiency distributions in the hydraulic actuator were graphically depicted.

VSI EWIMA 관리도의 경제적 설계 (An Economic Design of the EWMA Control Charts with Variable Sampling Interval)

  • 송서일;정혜진
    • 품질경영학회지
    • /
    • 제30권4호
    • /
    • pp.1-14
    • /
    • 2002
  • Traditional SPC techniques are looking out variation of process by fixed sampling interval and fixed sample size about every hour, the process of in-control or out-of-control couldn't be detected actually when the sample points are plotted near control limits, and it takes no notice of expense concerned with such sample points. In this paper, to overcome that, consider VSI(variable sampling interval) EWMA control charts which VSI method is applied. The VSI control charts use a short sampling internal if previous sample points are plotted near control limits, then the process has high probability of out-of-control. But it uses a long sampling interval if they are plotted near centerline of the control chart, since process has high possibility of in-control. And then a comparison and analysis between FSI(fixed sampling interval) and VSI EWMA in the statistical aspect and economic aspect is studied. Finally, we show that VSI EWMA control chart is more efficient than FSI EWMA control chart in the both aspects.

${\cdot}$출구 위치 변화에 따른 압전 구동방식 마이크로 펌프의 성능특성에 관한 수치해석적 연구 (A Numerical Study on the Performance Characteristics of a Piezoelectric Micropump for Different Inlet and Outlet Positions)

  • 김동희;정진;김창녕
    • 설비공학논문집
    • /
    • 제17권1호
    • /
    • pp.33-38
    • /
    • 2005
  • This study has been conducted to investigate flow characteristics of a micropump with piezoelectric materials. In this study, the change of flow rates has been investigated for different positions of the inlet and outlet and for different distances between them. The FSI(Fluid Structure Interaction) method has been employed for numerical analysis of the piezoelectric diffuser/nozzle based micropump. It has been found that time averaged flow rate is greater in the case that distance between the inlet and outlet is longer. For the cases where the positions of the inlet are different with the position of the fixed outlet at the center, the flow rate is increased as the inlet is located farther from the center. This study may supply fundamental understandings for the design and analysis of the prototypes of piezoelectric micropumps.

해양시추선용 경량수밀댐퍼의 구조안전성 평가에 관한 연구 (A Study on the Structural Safety Evaluation of Light Weight Damper for Offshore Rigs)

  • 장지성;지상원;한승훈
    • 동력기계공학회지
    • /
    • 제20권6호
    • /
    • pp.80-86
    • /
    • 2016
  • In this study, The watertight damper was designed to improve conventional DN 350A butterfly valve. The FSI(Fluid-Structure Interaction) analysis has performed to investigate the safety factor for the watertight damper. When watertight damper of disk was closed, the disk of pressure value is constant. However depending on the opening angle of disk, the flow velocity and pressure are changed. The maximum velocity was appeared at the end of disk on the small outlet area of duct. When the opening angel of disk is $90^{\circ}$, the maximum velocity was appeared at the center of ending disk. So we were found the opening angle of disk is bigger, the flow rate is increased and velocity is also increased from the result of FSI analysis. We can find the least deformation and stress when the opening angel of damper is $90^{\circ}$. When the $45^{\circ}$ opening angle of disk, the largest deformation and stress was found and the minimum safety factor 1.3 was calculated. As a result, we found that the structure of watertight damper is safe enough irrespective of opening angel.