• Title/Summary/Keyword: FSI Method

Search Result 170, Processing Time 0.024 seconds

Aerodynamic and Structural Design of 6kW Class Vertical-Axis Wind Turbine (공탄성 변형효과를 고려한 5MW급 풍력발전 블레이드의 피치각에 따른 성능해석)

  • Kim, Yo-Han;Kim, Dong-Hyun;Hwang, Mi-Hyun;Kim, Kyung-Hee;Hwang, Byung-Sun;Hong, Un-Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.39-44
    • /
    • 2011
  • In this study, performance analyses have been conducted for a 5MW class wind turbine blade model. Advanced computational analysis system based on computational fluid dynamics(CFD) and computational structural dynamics(CSD) has been developed in order to investigate detailed dynamic responsed of wind turbine blade. Reynolds-averaged Navier-Stokes (RANS) equations with K-${\epsilon}$ turbulence model are solved for unsteady flow problems of the rotating turbine blade model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems. Predicted aerodynamic performance considering structural deformation effect of the blade show different results compared to the case of rigid blade model.

Food quality management using sensory discrimination method based on signal detection theory and its application to drinking water (식품 품질관리를 위한 신호탐지이론(SDT) 감각차이식별분석 이론과 생수 품질관리에의 활용)

  • Kim, Min-A;Sim, Hye-Min;Lee, Hye-Seong
    • Food Science and Industry
    • /
    • v.52 no.1
    • /
    • pp.20-31
    • /
    • 2019
  • Sensory perception of food/beverage products is one of the most important quality factors to determine consumer acceptability and thus sensory discrimination methodology has been a vital tool for quality management. Signal detection theory(SDT) and Thurstonian modeling provide the most advanced psychometric approach to modeling various discrimination methods. In these theories, perceptual and cognitive decisional factors are considered so that, a fundamental measure of sensory difference (d') can be computed, independent of test methods used. In this paper, sensory discrimination analysis based on SDT and Thurstonian modeling is introduced for more accurate and systematic applications of sensory and hedonic quality management in industry. Ways to realize the statistical power and relative sensitivity of sensory discrimination methods theorized in SDT and Thurstonian modeling in practice, are also discussed by using a case study of the Nongshim quality management program for drinking water in which SDT A-Not A test methodology was further optimized.

An automated determination method of particulate matter on food surface (식품표면에 부착된 미세먼지의 정량법)

  • Park, Sun-Young;Bang, Bong-Jun;Lim, Dayoung;Chung, Donghwa;Lee, Dong-Un
    • Food Science and Industry
    • /
    • v.54 no.1
    • /
    • pp.29-33
    • /
    • 2021
  • Particulate matter (PM) is an air pollutant that causes serious environmental problems in Korea and other countries. The annual average PM10 concentration in Korea is around 40 ㎛/㎥, which is more than twice as high as the WHO recommended standard. When consumed with food, fine PM can pose a risk to humans. However, the risk of fine PM has been focused on the risk of fine PM introduced through the respiratory system. We investigated the quantitative measuring methods of PM10 on food surface to identify possible risk analysis of fine PM. The surfaces of food with artificially contaminated PM10 were observed with a scanning electron microscope(SEM). An automatic object-based image analysis was used to analyze the amount and size distribution of particulate matter contained in SEM micrographs.

Trends for the management of hazardous substances derived from fatty acids (지방산 유래 유해물질 관리 동향)

  • Shin, Jae-Wook;Jang, Gill-Woong
    • Food Science and Industry
    • /
    • v.55 no.1
    • /
    • pp.33-44
    • /
    • 2022
  • More than 500 different compounds have been identified in the cooking process of frying oil as a result of chemical reactions such as oxidation, polymerization, hydrolysis and pyrolysis, 3-MCPDe(3-Monochloropropane -1,2-diol ester) and GE(glycidyl ester) are also included in these compounds. When MCPDe and GE derivatives are absorbed into the body, they are converted into free forms by lipase enzymes, which turn into 3-MCPD and glycidol(2,3-epoxy-1-propanol), respectively. These exhibit genotoxic and carcinogenic effects. As the toxicity of 3-MCPDe and GE is known worldwide, the health risk is being researched. However, regulations have not been established in countries other than the European Union(EU). Several studies for the analysis of 3-MCPDe and GE are being conducted, and direct methods and indirect methods are applied. As a result of analyzing 3-MCPDe and GE contained in commercially available foods by various analysis methods, the content of 3-MCPDe in baby food/infant formula was ND~600 ㎍/mL and GE was ND~750 ㎍/mL. and purified vegetable oils and fats showed <250-8,430 ㎍/mL and 1,880-9,530 ㎍/mL. Thus, 3-MCPDe and GE were detected in various food types, several studies for the reduction of 3-MCPDe and GE are being conducted around the world.

Study on transient performance of tilting-pad thrust bearings in nuclear pump considering fluid-structure interaction

  • Qiang Li;Bin Li;Xiuwei Li;Quntao Xie;Qinglei Liu;Weiwei Xu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2325-2334
    • /
    • 2023
  • To study the lubrication performance of tilting-pad thrust bearing (TPTBs) during start-up in nuclear pump, a hydrodynamic lubrication model of TPTBs was established based on the computational fluid dynamics (CFD) method and the fluid-structure interaction (FSI) technique. Further, a mesh motion algorithm for the transient calculation of thrust bearings was developed based on the user defined function (UDF). The result demonstrated that minimum film thickness increases first and then decreases with the rotational speed under start-up condition. The influence of pad tilt on minimum film thickness is greater than that of collar movement at low speed, and the establishment of dynamic pressure mainly depends on pad tilt and minimum film thickness increases. As the increase of rotational speed, the influence of pad tilt was abated, where the influence of the moving of the collar dominated gradually, and minimum film thickness decreases. For TPTBs, the circumferential angle of the pad is always greater than the radial angle. When the rotational speed is constant, the change rate of radial angle is greater than that of circumferential angle with the increase of loading forces. This study can provide reference for improving bearing wear resistance.

Analysis of risk for high-speed trains caused by crosswind in subgrade settlement zones based on CFD-FE coupling

  • Qian Zhang;Xiaopei Cai;Tao Wang;Yanrong Zhang;Shusheng Yang
    • Wind and Structures
    • /
    • v.37 no.4
    • /
    • pp.275-287
    • /
    • 2023
  • Subgrade differential settlement of high-speed railways was a pivotal issue that could increase the risk of trains operation. The risk will be further increased when trains in the subsidence zone are affected by crosswinds. In this paper, the computational fluid dynamics (CFD) model and finite element (FE) model were established, and the data transmission interface of the two models was established by fluid-solid interaction (FSI) method to form a systematic crosswind-train-track-subgrade dynamic model. The risk of high-speed train encountering crosswind in settlement area was analyzed. The results showed that the aerodynamic force of the trains increased significantly with the increase in crosswind speed. The aerodynamic force of the trains could reach 125.14 kN, significantly increasing the risk of derailment and overturning. Considering the influence of crosswind, the risk of train operation could be greatly increased. The safety indices and the wheel-rail force both increased with the increase of the wind speed. For the high-speed train running at 350 km/h, the warning value of wind speed was 10.2 m /s under the condition of subgrade settlement with wavelength of 20 m and amplitude of 15 mm.

Pulsatile Blood Flows Through a Bileaflet Mechanical Heart Valve with Different Approach Methods of Numerical Analysis : Pulsatile Flows with Fixed Leaflets and Interacted with Moving Leaflets

  • Park, Choeng-Ryul;Kim, Chang-Nyung;Kwon, Young-Joo;Lee, Jae-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.1073-1082
    • /
    • 2003
  • Many researchers have investigated the blood flow characteristics through bileaflet mechanical heart valves using computational fluid dynamics (CFD) models. Their numerical approach methods can be classified into three types; steady flow analysis, pulsatile flow analysis with fixed leaflets, and pulsatile flow analysis with moving leaflets. The first and second methods have been generally employed for two-dimensional and three-dimensional calculations. The pulsatile flow analysis interacted with moving leaflets has been recently introduced and tried only in two-dimensional analysis because this approach method has difficulty in considering simultaneously two physics of blood flow and leaflet behavior interacted with blood flow. In this publication, numerical calculation for pulsatile flow with moving leaflets using a fluid-structure interaction method has been performed in a three-dimensional geometry. Also, pulsatile flow with fixed leaflets has been analyzed for comparison with the case with moving leaflets. The calculated results using the fluid-structure interaction model have shown good agreements with results visualized by previous experiments. In peak systole. calculations with the two approach methods have predicted similar flow fields. However, the model with fixed leaflets has not been able to predict the flow fields during opening and closing phases. Therefore, the model with moving leaflets is rigorously required for advanced analysis of flow fields.

Study on the Performance of a Centrifugal Compressor Using Fluid-Structure Interaction Method (유체-구조 연성해석을 이용한 원심압축기 운전익단간극과 성능 예측)

  • Lee, Horim;Kim, Changhee;Yang, Jangsik;Son, Changmin;Hwang, Yoonjei;Jeong, Jinhee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.357-363
    • /
    • 2016
  • In this study, we perform a series of aero-thermo-mechanical analyses to predict the running-tip clearance and the effects of impeller deformation on the performance using a centrifugal compressor. During operation, the impeller deformation due to a combination of the centrifugal force, aerodynamic pressure and the thermal load results in a non-uniform tip clearance profile. For the prediction, we employ the one-way fluid-structure interaction (FSI) method using CFX 14.5 and ANSYS. The predicted running tip clearance shows a non-uniform profile over the entire flow passage. In particular, a significant reduction of the tip clearance height occurred at the leading and trailing edges of the impeller. Because of the reduction of the tip clearance, the tip leakage flow decreased by 19.4%. In addition, the polytrophic efficiency under operating conditions increased by 0.72%. These findings confirm that the prediction of the running tip clearance and its impact on compressor performance is an important area that requires further investigation.

Computation of Dynamic Fluid-Structure Interaction in a 2-Dimensional Laminar Channel Flow Divided by a Plate (판으로 나뉘어진 2차원 충류 채널유동에서 동적 유체-구조물 상호작용 수치해석)

  • Namkoong, Kak;Choi, Hyoung-Gwon;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1738-1746
    • /
    • 2002
  • In the FSI (Fluid-Structure Interaction) problems, two different governing equations are to be solved together. One is fur the fluid and the other for the structure. Furthermore, a kinematic constraint should be imposed along the boundary between the fluid and the structure. We use the combined formulation, which incorporates both the fluid and structure equations of motion into a single coupled variational equation so that it is not necessary to calculate the fluid force on the surface of structure explicitly when solving the equations of motion of the structure. A two-dimensional channel flow divided by a Bernoulli-Euler beam is considered and the dynamic response of the beam under the influence of channel flow is studied. The Navier-Stokes equations are solved using a P2P1 Galerkin finite element method with ALE (Arbitrary Lagrangian-Eulerian) algorithm. The internal structural damping effect is not considered in this study and numerical results are compared with a previous work fer steady case. In addition to the Reynolds number, two non-dimensional parameters, which govern this fluid-structure system, are proposed. It is found that the larger the dynamic viscosity and density of the fluid are, the larger the damping of the beam is. Also, the added mass is found to be linearly proportional to the density of the fluid.

Analysis of Motion of Batoid Fins for Thrust Generation by Using Fluid-Structure Interaction Method (추진력 생성을 위한 가오리 날개 짓의 유체-구조연성 수치해석)

  • Kwon, Dong-Hyun;Lee, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1575-1580
    • /
    • 2010
  • Recently, the development of bio-mimetic underwater vehicles that can emulate the characteristic movements of marine fish and mammals has attracted considerable attention. In this study, the motion of the batoid (i.e., cownose ray) fin that facilitates excellent cruising and maneuvering during underwater movement has been studied. The velocity achieved and distance covered with each fin movement are numerically studied. A fluid-structure interaction method is used to perform 3D time-dependent numerical analysis, wherein an adaptive mesh is employed to account for the large deformation of a fin interacting with a fluid. The results of a preliminary study show that the thrust of a ray fin is highly dependent on the frequency. Further, once the fin amplitude required for generating a given thrust is evaluated for the conditions experienced by an actual ray, the frequency and amplitude values for achieving better thrust are determined.