DOI QR코드

DOI QR Code

Analysis of Motion of Batoid Fins for Thrust Generation by Using Fluid-Structure Interaction Method

추진력 생성을 위한 가오리 날개 짓의 유체-구조연성 수치해석

  • Received : 2009.12.30
  • Accepted : 2010.09.01
  • Published : 2010.11.01

Abstract

Recently, the development of bio-mimetic underwater vehicles that can emulate the characteristic movements of marine fish and mammals has attracted considerable attention. In this study, the motion of the batoid (i.e., cownose ray) fin that facilitates excellent cruising and maneuvering during underwater movement has been studied. The velocity achieved and distance covered with each fin movement are numerically studied. A fluid-structure interaction method is used to perform 3D time-dependent numerical analysis, wherein an adaptive mesh is employed to account for the large deformation of a fin interacting with a fluid. The results of a preliminary study show that the thrust of a ray fin is highly dependent on the frequency. Further, once the fin amplitude required for generating a given thrust is evaluated for the conditions experienced by an actual ray, the frequency and amplitude values for achieving better thrust are determined.

최근 수중 생물체의 특성과 운동성을 가진 생체 모방형 수중로봇의 모방연구가 활발히 진행 되고 있다. 본 논문은 수중에서 기동성과 항해성이 우수한 가오리류 어류 움직임을 모방하여 날개 짓에 의한 속도 및 이동거리를 수치적으로 연구하고자 한다. 유체-구조 연성해석의 방법을 사용하여 3 차원 해석을 실시하였으며, 날개 짓에 의한 큰 변형을 보정하고자 격자 재생성 기능을 사용하였다. 실제 가오리는 날개 진동수에 의해 추진력에 가장 큰 영향을 받는다. 이를 바탕으로 실제 가오리의 움직임과 관련된 파라미터를 이용하여 진동수 및 진폭의 변화에 대하여 최대의 추진력을 갖는 날개의 움직임을 연구하고자 한다.

Keywords

References

  1. Heine, C., 1992, “Mechanics of Flapping Fin Locomotion in the Cownose Ray, Rhinopera Bonasus (Dlasmobranchii: Myliobatidae),” Ph.D. Thesis, Duke University.
  2. Blake, R. W., 1979, “The Swimming of the Mandarin Fish Synchropus Picturatus (Callionyiidae: Teleostei),” Journal of the Marine Biological Association, 59, pp. 421-428. https://doi.org/10.1017/S0025315400042739
  3. Rosenberger, L. J., 2001, “Pectoral Fin Locomotion in Batoid Fishes: Undulation Versus Oscillation,” The Journal of Experimental Biology, 204, pp. 379-394.
  4. Clark, R. P. and Smits A. J., 2006, “Thrust Production and Wake Structure of a Batoid-Inspired Oscillating Fin,” Journal of Fluid Mechanics, 562, 415-429 https://doi.org/10.1017/S0022112006001297
  5. Theo, P. L. Brower, 2006, Design of a Manta Ray Inspired Underwater Propulsive Mechanism for Long range, Low Power Operation, Ms.D. Thesis, Tufts University.
  6. Yang, S. B., Qiu J., Han X. Y., 2009, “Kinematics Modeling and Experiments of Pectoral Oscillation Propulsion Robotic Fish,” Journal of Bionic Engineering, 6, pp. 174-179. https://doi.org/10.1016/S1672-6529(08)60114-6
  7. Zhang, H., and Bathe, K. J., 2001, “Direct and Iterative Computing of Fluid Flows Fully Coupled with Structures,” Computational Fluid and Solid Mechanics, K. J. Bathe, Editor, Elsevier Science.
  8. ADINA R&D, Inc., 2008, Theory and Modeling Guide Volume III: ADINA CFD & FSI, A User’s Manual.