• Title/Summary/Keyword: FRP concrete

Search Result 751, Processing Time 0.029 seconds

Compression Behavior of Manufacturability Enhanced FRP-Concrete Hybrid Composite Pile (제작성을 개선한 하이브리드 FRP-콘크리트 합성말뚝의 압축거동)

  • Lee, Young-Geun;Park, Joon-Seok;Kim, Sun-Hee;Kim, Hong-Lak;Yoon, Soon-Jong
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.66-71
    • /
    • 2013
  • As a fundamental structural element of construction, a pile is constructed to transfer loads from superstructure to foundation. In general, since the pile foundation is constructed in the ground or ground under water, it is difficult to protect from the damages due to moisture and/or salt which create corrosive environment and it is even more difficult to estimate its durability. In this study, in order to enhance the durability and constructibility of the pile foundation, FRP-concrete hybrid composite pile (HCFFT) is suggested. Moreover, equation for the prediction of load carrying capacity of HCFFT circular members under compression is suggested and discussed based on the results of analytical and experimental investigations. In addition, we also conducted the finite element simulation for the structural behavior of new HCFFT composite pile and the result is compared with those of experimental and analytical studies. In addition, the axial loading capacity of new HCFFT composite pile is compared with those of existing PHC pile and hollow circular steel pipe pile, and it was found that the new HCFFT composite pile has advantages over conventional PHC and steel pipe piles.

Evaluation on the Thermal Resistance Capacity of Fire Proof Materials for Improving Fire Resistance of Near-Surface-Mounted FRP in Concrete (콘크리트내에 표면매입 보강된 FRP의 내화성능 향상을 위한 내화단열재 열저항성능 평가)

  • Yeon, Jea-Young;Seo, Soo-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.51-58
    • /
    • 2014
  • This paper presents a fire exposure test result to evaluate fire resistance capacity of retrofit method using FRP (Fiber Reinforced Polymer) in reinforcement concrete structure. Especially, this paper focused on near-surface-mounted retrofit method; FRP is mounted into the groove after making a groove in concrete. In the test, main parameters are retrofit method and materials for fire proofing. Spray type of perlite and board type of calcium silicate were considered as external fire proof on surface while particle of calcium silicate and polymer mortar as internal one in groove. By increasing the temperature of inside heating furnace, the transfer of temperature from surface of fire proofing material to groove in specimen was measured. As a result, fire proofing using the board of calcium silicate was more effective to delay the heat transfer from outside than spraying with perlite. It was found that the fire proofing could resist outside temperature of $820^{\circ}C$ at maximum to keep the temperature of epoxy below glass transit temperature (GTT).

Evaluation of Static and Fatigue Performances of Decks Reinforced with GFRP Rebar for Reinfocement Ratio (GFRP 보강근으로 보강된 바닥판의 보강비에 따른 정적 및 피로성능 평가)

  • You, Young-Jun;Park, Young-Hwan;Choi, Ji-Hun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.491-497
    • /
    • 2014
  • The corrosion of steel reinforcement in reinforced concrete bridge decks significantly affects the degradation of the capacity. Due to the advantageous characteristics such as high tensile strength and non-corrosive property, fiber reinforced polymer (FRP) has been gathering much interest from designers and engineers for possible usage as a alternative reinforcement for a steel reinforcing bar. However, its application has not been widespread, because there data for short- and long-term performance data of FRP reinforced concrete members are insufficient. In this paper, seven full-scale decks with dimensions of $4000{\times}3000{\times}240mm$ were prepared and tested to failure in the laboratory. The test parameter was the bottom reinforcement ratio in transverse direction. The decks were subjected to various levels of concentrated cyclic load with a contact area of $577{\times}231mm$ to simulate the vehicle loading of DB-24 truck wheel loads acting on the center span of the deck. It was observed that the glass FRP (GFRP) reinforced deck on a restraint girder is strongly effected to the level of the applied load rather than the bottom reinforcement ratio. The study results showed that the maximum load less than 58% of the maximum static load can be applied to the deck to resist a fatigue load of 2 million cycles. The fatigue life of the GFRP decks from this study showed the lower and higher fatigue performance than that of ordinary steel and CFRP rebar reinforced concrete deck. respectively.

Flexural Strength and Deflection Evaluation for FRP Bar Reinforced HSC Beams with Different Types of Reinforcing Bar and Fiber (이질 보강근 및 섬유와 함께 보강된 FRP 보강근 보강 고강도 콘크리트 보의 휨 강도 및 처짐 평가)

  • Yang, Jun-Mo;Yoo, Doo-Yeol;Shin, Hyun-Oh;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.413-420
    • /
    • 2011
  • The test results of high-strength concrete beam specimens, which have various combinations of different types of flexural reinforcement and short fibers, were compared with the prediction results of codes, guidelines and models proposed by researchers. The theoretical calculation based on the ultimate strength method of the KCI and ACI Code underestimated the ultimate moments of FRP bar-reinforced beams without fibers. The models proposed by ACI 544.4R and Campione predicted the ultimate moment capacities inaccurately for the FRP bar-reinforced beam with steel fibers, because these models do not consider the increased ultimate compressive strain of fiber reinforced concrete. Bischoff's deflection model predicted the service load deflections reasonably well, while the deflection model of ACI Committee 440 underestimated the deflection of FRP bar-reinforced beams. Because the ACI 440 expression, used to predict member deflection, cannot directly apply to the beams reinforced with different types of reinforcing bars, an alternative method to estimate the deflections of beams with different types of reinforcing bars using the ACI 440 expression was proposed. In addition, Bischoff's approach for computing deflection was extended to include deflection after yielding of the steel reinforcement in the beams reinforced with steel and FRP bars simultaneously.

Analytical Studies for Predicting Behaviors of RC Beams Retrofitted with Hybrid FRPs (하이브리드 FRP로 보강된 콘크리트 보의 거동 예측을 위한 해석연구)

  • Utui, Nadia;Kim, Hee-Sun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.1-6
    • /
    • 2011
  • This study aims at predicting structural behaviors of RC (Reinforced Concrete) beams retrofitted with hybrid FRPs (Fiber Reinforced Polymers). Toward this goal, structural analysis for the RC beams retrofitted with hybrid FRPs are performed and validated using existing experimental data. For the analysis, failure models due to debonding of FRPs and concrete separation are implemented within FE (Finite Element) model, based on Smith and Teng, model, and Teng and Yao model, respectively. Nonlinear material and geometrical effects are also included in the analysis. The suggested modeling approaches are able to predict structural behaviors of RC beams retrofitted with hybrid FRPs similar to the experimental data, however, a numerical model needs to be developed in order to predict failure strength of RC beams retrofitted with hybrid FRPs accurately.

Fire performance of concrete-filled steel tubular columns strengthened by CFRP

  • Tao, Zhong;Wang, Zhi-Bin;Han, Lin-Hai;Uy, Brian
    • Steel and Composite Structures
    • /
    • v.11 no.4
    • /
    • pp.307-324
    • /
    • 2011
  • With the increasing use of concrete-filled steel tubes (CFST) as structural members, there is a growing need to provide suitable measures for possible strengthening or repair of these kinds of structural elements. Fibre reinforced polymer (FRP) jacketing is a recent method and is particularly attractive in which it does not significantly increase the section size, and is relatively easy to install. Thus, it can be used to enhance strength and/or ductility of CFST members. Very little information is available on the performance of FRP-strengthened CFST members under fire conditions. This paper is an attempt to study the fire performance of CFST columns strengthened by FRP. The results of fire endurance tests on FRP-strengthened circular CFST columns are presented. Failure modes of the specimens after exposure to fire, temperatures in the cross section, axial deformation and fire resistance of the composite columns are analysed. It is demonstrated that the required fire endurance can be achieved if the strengthened composite columns are appropriately designed.

Novel NSM configuration for RC column strengthening-A numerical study

  • Gurunandan, M.;Raghavendra, T.
    • Computers and Concrete
    • /
    • v.27 no.5
    • /
    • pp.437-445
    • /
    • 2021
  • Retrofitting of structures has gained importance over the recent years. Particularly, Reinforced Cement Concrete (RCC) column strengthening has become a challenge to the structural engineers, owing to the risks and complexities involved in it. There are several methods of RCC column strengthening viz. RCC jacketing, steel jacketing and Fiber Reinforced Polymer (FRP) wrapping etc., FRP wrapping is the most promising alternative when compared to the others. The large research database shows FRP wrapping, through lateral confinement, improves the axial load carrying capacity of the columns under concentric loading. However, its confining efficiency reduces under eccentric loading. Hence a relative newer technique called Near Surface Mounting (NSM), in which Carbon FRP (CFRP) strips are epoxy grouted to the precut grooves in the cover concrete of the columns, has been thrust domain of research. NSM technique strengthens the column nominally under concentric load case while significantly under eccentric case. A novel configuration of NSM in which the vertical NSM (VNSM) strips are being connected by horizontal NSM (HNSM) strips was numerically investigated under both concentric and eccentric loading. It was found that the configuration with 6 HNSM strips performed better under eccentric loading than under concentric loading, while the configuration with 3 HNSM strips performed better under concentric loading than under eccentric loading. Hence an optimum of 4 HNSM strips is recommended as strengthening measure for the given column specifications. It was also found that Aluminum alloy cannot be used instead of CFRP in NSM applications owing to its lower mechanical properties.

Axial strength of FRP-reinforced geopolymeric concrete members: A step towards sustainable construction

  • Mohamed Hechmi El Ouni;Ali Raza;Bisma Khalid;Afzal Ahmed;Muhammad Sohail Jameel;Yasser Alashker
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.687-704
    • /
    • 2023
  • This study aims to examine the structural response of glass fibre-reinforced polymer (Glass-FRP) reinforced geopolymer electronic waste aggregate concrete (GEWC) compression elements under axial compression for sustainable development. The research includes the fabrication of nine GEWC circular compression elements with different reinforcement ratios and a 3-D nonlinear finite element model using ABAQUS. The study involves a detailed parametric analysis to examine the impact of various parameters on the behavior of GEWC compression elements. The results indicate that reducing the vertical distance of glass-FRP ties improves the ductility of GEWC compression elements, and those with eight longitudinal rebars have higher axial load-carrying capacities. The finite element predictions were in good agreement with the testing results, and the put forwarded empirical model shows higher accuracy than previous models by involving the confinement effect of lateral glass-FRP ties on the axial strength of GEWC compression elements. This research work contributes to minimizing the carbon footprint of cement manufacturing and electronic waste materials for sustainable development.

Analytical Evaluation of High Velocity Impact Resistance of Two-way RC Slab Reinforced with Steel Fiber and FRP Sheet (강섬유 및 FRP Sheet로 보강한 2방향 RC 슬래브의 고속 충격저항성능에 대한 해석적 평가)

  • Lee, Jin Young;Shin, Hyen Oh;Min, Kyeng Hwan;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.1-9
    • /
    • 2013
  • This paper presents high-velocity impact analysis of two-way RC slabs, including steel fibers and strengthening with fiber reinforced polymer (FRP) sheets for evaluating impact resistance. The analysis uses the LS-DYNA program, which is advanced in impact analysis. The present analysis was performed similarly to the high-velocity impact tests conducted by VTT, the technical research center of Finland, to verify the analysis results. High-velocity impact loads were applied to $2100{\times}2100{\times}250$ mm size two-way RC slab specimens, using a non-deformable steel projectile of 47.5kg mass and 134.9m/s velocity. In this research, extra impact analysis of material specimens was carried out to verify the material models used to the analysis. The elastic-plastic hydrodynamic model, concrete damage model and orthotropic elastic model were used to simulate the non-linear softening behavior of steel fiber reinforced concrete (SFRC), and material properties of normal concrete and FRP sheets, respectively. It is concluded that the suggested analysis technique has good reliability, and can be effectively applied in evaluating the effectiveness of reinforcing/retrofitting materials and techniques. Also, the Steel fiber and FRP sheet strengthening systems provided outstanding performance under high-velocity impact loads.

Effect of Long-Term Load on Flexural Crack Widths in FRP-Reinforced Concrete Beams (장기하중이 FRP-보강근 콘크리트 보의 휨균열폭에 미치는 영향)

  • Choi, Bong-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.694-701
    • /
    • 2018
  • Larger crack widths can be observed more in FRP-reinforced concrete members than in steel-reinforced concrete members as a result of the lower elastic modulus and bond strength of FRP reinforcement. The ACI 440.1R-15 design guide provides equations derived as the maximum bar spacing to control the crack widths indirectly. On the other hand, it is not concerned with long-term effects on the crack control design provisions. This study provides suggestions for how to incorporate time-dependent effects into the crack width equation. The work presented herein includes the results from 8 beams composed of four rectangular and T-shaped FRP-reinforced concrete beams tested for one year under four-point bending. Over a one year period, the crack widths increased as much as 2.6~3.0 times in GFRP and AFRP-reinforced specimens and 1.1~1.4 times in the CFRP-reinforced specimens compared to steel-reinforced specimens. In addition, the average multiple for crack width at one year relative to the instantaneous crack width upon the application of the sustained load was 2.4 in the specimens with a rectangular section and 3.1 in the specimens with a T-shaped section. As a result, it is recommended conservatively that the time-dependent coefficient be taken as 2.5 for the rectangular beams and 3.5 for T-beams.