DOI QR코드

DOI QR Code

Axial strength of FRP-reinforced geopolymeric concrete members: A step towards sustainable construction

  • Mohamed Hechmi El Ouni (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Ali Raza (Department of Civil Engineering, University of Engineering and Technology Taxila) ;
  • Bisma Khalid (Department of Transportation Engineering and Management, University of Engineering and Technology Lahore) ;
  • Afzal Ahmed (Department of Civil Engineering, University of Engineering and Technology Taxila) ;
  • Muhammad Sohail Jameel (Department of Transportation Engineering and Management, University of Engineering and Technology Lahore) ;
  • Yasser Alashker (Department of Civil Engineering, College of Engineering, King Khalid University)
  • Received : 2022.02.16
  • Accepted : 2023.05.02
  • Published : 2023.06.10

Abstract

This study aims to examine the structural response of glass fibre-reinforced polymer (Glass-FRP) reinforced geopolymer electronic waste aggregate concrete (GEWC) compression elements under axial compression for sustainable development. The research includes the fabrication of nine GEWC circular compression elements with different reinforcement ratios and a 3-D nonlinear finite element model using ABAQUS. The study involves a detailed parametric analysis to examine the impact of various parameters on the behavior of GEWC compression elements. The results indicate that reducing the vertical distance of glass-FRP ties improves the ductility of GEWC compression elements, and those with eight longitudinal rebars have higher axial load-carrying capacities. The finite element predictions were in good agreement with the testing results, and the put forwarded empirical model shows higher accuracy than previous models by involving the confinement effect of lateral glass-FRP ties on the axial strength of GEWC compression elements. This research work contributes to minimizing the carbon footprint of cement manufacturing and electronic waste materials for sustainable development.

Keywords

Acknowledgement

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large group Research Project under grant number RGP 2/6/44.

References

  1. Abdellatif, S. and Raza, A. (2023), "Machine learning model for predicting ultimate capacity of FRP-reinforced normal strength concrete structural elements", Struct. Eng. Mech., 85(3), 315-335. https://doi.org/10.12989/sem.2023.85.3.315. 
  2. Adazabra, A., Viruthagiri, G. and Kannan, P. (2017), "Influence of spent shea waste addition on the technological properties of fired clay bricks", J. Build. Eng., 11, 166-177. https://doi.org/10.1016/j.jobe.2017.04.006. 
  3. Afifi, M.Z., Mohamed, H.M. and Benmokrane, B. (2013), "Axial capacity of circular concrete compression elements reinforced with GFRP rebars and spirals", J. Compos. Constr., 18(1), 04013017. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000438. 
  4. Afifi, M.Z., Mohamed, H.M. and Benmokrane, B. (2015), "Theoretical stress-strain model for circular concrete columns confined by GFRP spirals and hoops", Eng. Struct., 102, 202-213. https://doi.org/10.1016/j.engstruct.2015.08.020. 
  5. Ahmad, A., Khan, Q.U.Z. and Raza, A. (2020), "Reliability analysis of strength models for CFRP-confined concrete cylinders", Compos. Struct., 244, 112312. https://doi.org/10.1016/j.compstruct.2020.112312. 
  6. Ahmad, F., Jamal, A., Mazher, K.M., Umer, W. and Iqbal, M. (2022), "Performance evaluation of plastic concrete modified with e-waste plastic as a partial replacement of coarse aggregate", Mater., 15(1), 175. https://doi.org/10.3390/ma15010175. 
  7. Ahmad, Z., Alsulamy, S., Raza, A., Salmi, A., Abid, M., Deifalla, A.F., Khadimallah, M.A. and Elhadi, K.M. (2023), "Life cycle assessment (LCA) of polypropylene fibres (PPF) on mechanical, durability, and microstructural efficiency of concrete incorporating electronic waste aggregates", Case Stud. Constr. Mater., 18, e01979. https://doi.org/10.1016/j.cscm.2023.e01979. 
  8. Akram, A., Sasidhar, C. and Pasha, K.M. (2015), "E-waste management by utilization of E-plastics in concrete mixture as coarse aggregate replacement", Int. J. Innov. Res. Sci., Eng. Technol., 4(7), 5087-5095. https://doi.org/10.15680/IJIRSET.2015.0407008. 
  9. Ali, K., Qureshi, M.I., Saleem, S. and Khan, S.U. (2021), "Effect of waste electronic plastic and silica fume on mechanical properties and thermal performance of concrete", Constr. Build. Mater., 285, 122952. https://doi.org/10.1016/j.conbuildmat.2021.122952. 
  10. American Concrete Institute 318-11 (2011), Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures, Americ Concrete Institute, Farmington Hills, MI, U.S.A. 
  11. Amin, M., Zeyad, A.M., Tayeh, B.A. and Agwa, I.S. (2021), "Effect of high temperatures on mechanical, radiation attenuation and microstructure properties of heavyweight geopolymer concrete", Struct. Eng. Mech., 80(2), 181-199. https://doi.org/10.12989/sem.2021.80.2.181. 
  12. ASTM C143/C143M-15, Standard Test Method for Slump of Hydraulic-Cement Concrete, West Conshohocken, Pennsylvania, USA. 
  13. ASTM C807-13, Standard Test Method for Time of Setting of Hydraulic Cement Mortar by Modified Vicat Needle, West Conshohocken, Pennsylvania, USA. 
  14. Baili, J., Raza, A., Azab, M., Ali, K., El Ouni, M.H., Haider, H. and Farooq, M.A. (2022), "Experiments and predictive modeling of optimized fibre-reinforced concrete columns having FRP rebars and hoops", Mech. Adv. Mater. Struct., 1-20. https://doi.org/10.1080/15376494.2022.2108527. 
  15. Berradia, M., Alashker, Y., Raza, A. and El Ouni, M.H. (2022b), "Artificial neural networks approach for prediction of axial loading capacity of circular normal strength concrete columns confined by both crosswise steel reinforcement and carbon fibre reinforced polymer wraps", Adv. Struct. Eng., 25(15), 3171-3194. https://doi.org/10.1177/13694332221119865. 
  16. Berradia, M., Azab, M., Ahmad, Z., Accouche, O., Raza, A. and Alashker, Y. (2022a), "Data-driven prediction of compression strength of FRP-confined concrete elements: An application of machine learning models", Struct. Eng. Mech., 83(4), 515-535. https://doi.org/10.12989/sem.2022.83.4.515. 
  17. Britto, J. and Muthuraj, M. (2019), "Prediction of compression strength of bacteria incorporated geopolymer concrete by using ANN and MARS", Struct. Eng. Mech., 70(6), 671-681. https://doi.org/10.12989/sem.2019.70.6.671. 
  18. Canadian Standard Association (2012), Design and Construction of Building Structures with Fibre-Reinforced Polymer, CAN/CSA S806-12. Toronto, ON, Canada. 
  19. Chi, Y., Xu, L. and Yu, H.S. (2014), "Constitutive modeling of steel-polypropylene hybrid fibre reinforced concrete using a non-associated plasticity and its numerical implementation", Compos. Struct., 111, 497-509. https://doi.org/10.1016/j.compstruct.2014.01.025. 
  20. Chi, Y., Yu, M., Huang, L. and Xu, L. (2017), "Finite element modeling of steel-polypropylene hybrid fibre reinforced concrete using modified concrete damaged plasticity", Eng. Struct., 148, 23-35. https://doi.org/10.1016/j.engstruct.2017.06.039. 
  21. Dahmani, L., Khennane, A. and Kaci, S. (2010), "Crack identification in reinforced concrete beams using ANSYS software", Strength Mater., 42(2), 232-240. https://doi.org/10.1007/s11223-010-9212-6. 
  22. Danda, U.K. (2020), "Experimental study on reinforced geopolymer concrete columns using GGBS", Mater. Today, Proc., 33(1), 632-636. https://doi.org/10.1016/j.matpr.2020.05.607. 
  23. De la Colina Martinez, A.L., Barrera, G.M., Diaz, C.E.B., Cordoba, L.I.A ., Nunez, F.U. and Hernandez, D.J.D. (2019), "Recycled polycarbonate from electronic waste and its use in concrete, Effect of irradiation", Constr. Build. Mater., 201, 778-785. https://doi.org/10.1016/j.conbuildmat.2018.12.147. 
  24. El Ouni, M.H., Raza, A., Elhadi, K.M., Azab, M. and Arshad, M. (2022), "Parametric investigation of GFRP-RCC jute fibre-reinforced recycled aggregate concrete elements", Struct., 45, 1043-1061. https://doi.org/10.1016/j.istruc.2022.09.068. 
  25. Elchalakani, M., Dong, M., Karrech, A., Li, G., Mohamed Ali, M. S. and Yang, B. (2019), "Experimental investigation of rectangular air-cured geopolymer concrete columns reinforced with GFRP rebars and stirrups", J. Compos. Constr., 23(3), 04019011. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000938. 
  26. Elchalakani, M., Karrech, A., Dong, M., Ali, M.S.M. and Yang, B. (2018), "Experiments and finite element analysis of GFRP reinforced geopolymer concrete rectangular columns subjected to concentric and eccentric axial loading", Struct., 14, 273-289. https://doi.org/10.1016/j.istruc.2018.04.001. 
  27. Elchalakani, M. and Ma, G. (2017), "Tests of glass fibre reinforced polymer rectangular concrete columns subjected to concentric and eccentric axial loading", Eng. Struct., 151, 93-104. https://doi.org/10.1016/j.engstruct.2017.08.023. 
  28. Genikomsou, A.S. and Polak, M.A. (2015), "Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS", Eng. Struct., 98, 38-48. https://doi.org/10.1016/j.engstruct.2015.04.016. 
  29. Hadhood, A., Mohamed, H.M. and Benmokrane, B. (2016), "Axial load-moment interaction diagram of circular concrete columns reinforced with CFRP rebars and spirals, Experimental and theoretical investigations", J. Compos. Constr., 21(2), 04016092. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000748. 
  30. Hadhood, A., Mohamed, H.M. and Benmokrane, B. (2017), "Failure envelope of circular concrete columns reinforced with glass fibre-reinforced polymer rebars and spirals", ACI Struct. J., 114(6), 1417-1428. https://doi.org/10.14359/51689498. 
  31. Hadi, M.N., Ahmad, J. and Yu, T. (2020), "Tests of geopolymer concrete columns with basalt-fibre-reinforced-polymer rebars and tubes", Proc. Inst. Civil Eng.-Struct. Build., 175(8), 628-643. https://doi.org/10.1680/jstbu.19.00227. 
  32. Hadi, M. and Youssef, J. (2016), "Experimental investigation of GFRP-reinforced and GFRP-encased square concrete elements under axial and eccentric load, and four-point bending test", J. Compos. Constr., 20(5), 04016020. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000675. 
  33. Hamsavathi, K., Prakash, K.S. and Kavimani, V. (2020), "Green high strength concrete containing recycled Cathode Ray Tube Panel Plastics (E-waste) as coarse aggregate in concrete beams for structural applications", J. Build. Eng., 30, 101192. https://doi.org/10.1016/j.jobe.2020.101192. 
  34. Hany, N.F., Hantouche, E.G. and Harajli, M.H. (2016), "Finite element modeling of FRP-confined concrete using modified concrete damaged plasticity", Eng. Struct., 125, 1-14. https://doi.org/10.1016/j.engstruct.2016.06.047. 
  35. Hassan, A., Arif, M. and Shariq, M. (2019), "Use of geopolymer concrete for a cleaner and sustainable environment-A review of mechanical properties and microstructure", J. Clean. Prod., 223, 704-728. https://doi.org/10.1016/j.jclepro.2019.03.051. 
  36. Hu, H., Huang, C.S., Wu, M.H. and Wu, Y.M. (2003), "Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect", J. Struct. Eng., 129(10), 1322-1329. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:10(1322). 
  37. Huang, Z. and Liew, J.Y.R. (2015), "Nonlinear finite element modelling and parametric study of curved steel-concrete-steel double skin composite panels infilled with ultra-lightweight cement composite", Constr. Build. Mater., 95, 922-938. https://doi.org/10.1016/j.conbuildmat.2015.07.134. 
  38. Ibrahim, A.M.A., Fahmy, M.F.M. and Wu, Z. (2016), "3D finite element modeling of bond-controlled behavior of steel and basalt FRP-reinforced concrete square bridge columns under lateral loading", Compos. Struct., 143, 33-52. https://doi.org/10.1016/j.compstruct.2016.01.014. 
  39. Ilki, A., Kumbasar, N. and Koc, V. (2004), "Low strength concrete elements externally confined with FRP sheets", Struct. Eng. Mech., 18(2), 167-194. https://doi.org/10.12989/sem.2004.18.2.167. 
  40. Iqbal, M., Breivik, K., Syed, J.H., Malik, R.N., Li, J., Zhang, G. and Jones, K.C. (2015), "Emerging issue of e-waste in Pakistan, a review of status, research needs and data gaps", Environ. Poll., 207, 308-318. https://doi.org/10.1016/j.envpol.2015.09.002. 
  41. Jiang, T. and Teng, J. (2007), "Analysis-oriented stress-strain models for FRP-confined concrete", Eng. Struct., 29(11), 2968-2986. https://doi.org/10.1016/j.engstruct.2007.01.010. 
  42. Kankeri, P., Prakash, S.S. and Pachalla, S.K.S. (2018), "Analytical and numerical studies on hollow core slabs strengthened with hybrid FRP and overlay techniques", Struct. Eng. Mech., 65(5), 535-546. https://doi.org/10.12989/sem.2018.65.5.535. 
  43. Karabinis, A.I. and Rousakis, T.C. (2002), "Concrete confined by FRP material, a plasticity approach", Eng. Struct., 24, 923-932. https://doi.org/10.1016/S0141-0296(02)00011-1. 
  44. Karrech, A., Abbassi, F., Basarir, H. and Attar, M. (2017), "Selfconsistent fractal damage of natural geo-materials in finite strain", Mech. Mater., 104, 107-120. https://doi.org/10.1016/j.mechmat.2016.08.017. 
  45. Khan, H., Rafique, M., Karam, S., Ahmad, K. and Bashir, A. (2014), "Identification of shear cracks in reinforced beams using finite element method (ANSYS)", Pakistan J. Sci., 66(1), 50. 
  46. Khan, Q.S., Sheikh, M.N. and Hadi, M.N.S. (2016), "Axial-flexural interactions of GFRP-CFFT columns with and without reinforcing GFRP rebars", J. Compos. Constr., 21(3), 04016109. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000771. 
  47. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solid. Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4. 
  48. Ma, H., Wu, Y., Huang, C. and Zhao, Y. (2021), "Mechanical properties and bearing capacity of CFRP confined steel reinforced recycled concrete columns under axial compression loading", Struct. Eng. Mech., 79(4), 451-472. https://doi.org/10.12989/sem.2021.79.4.451. 
  49. Mander, J.B., Priestley, M. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804). 
  50. Maranan, G., Manalo, A.C., Benmokrane, B., Karunasena, W. and Mendis, P. (2016), "Behavior of concentrically loaded geopolymer-concrete circular columns reinforced longitudinally and crosswisely with GFRP rebars", Eng. Struct., 117, 422-436. https://doi.org/10.1016/j.engstruct.2016.03.036. 
  51. Mercimek, O., Anil, O., Ghoroubi, R., Sakin, S. and Yilmaz, T. (2021), "Experimental and numerical investigation of RC column strengthening with CFRP strips subjected to low-velocity impact load", Struct. Eng. Mech., 79(6), 749-765. https://doi.org/10.12989/sem.2021.79.6.749. 
  52. Mohamed, H.M., Afifi, M.Z. and Benmokrane, B. (2014), "Performance evaluation of concrete columns reinforced longitudinally with FRP rebars and confined with FRP hoops and spirals under axial load", J. Bridge Eng., 19(7), 04014020. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000590. 
  53. Nanni, A. and Bradford, N.M. (1995), "FRP jacketed concrete under uniaxial compression", Constr. Build. Mater., 9(2), 115-124. https://doi.org/10.1016/0950-0618(95)00004-Y. 
  54. Narule, G.N. and Bambole, A.N. (2018), "Axial behavior of CFRP wrapped RC columns of different shapes with constant slenderness ratio", Struct. Eng. Mech., 65(6), 679-687. https://doi.org/10.12989/sem.2018.65.6.679. 
  55. Nasier, S. (2021), "Utilization of recycled form of concrete, E-wastes, glass, quarry rock dust and waste marble powder as reliable construction materials", Mater. Today, Proc., 45(2), 3231-3234. https://doi.org/10.1016/j.matpr.2020.12.381. 
  56. Raza, A., Manalo, A.C., Rafique, U. and AlAjarmeh, O.S. (2021a), "Concentrically loaded recycled aggregate geopolymer concrete columns reinforced with GFRP rebars and spirals", Compos. Struct., 268, 113968. https://doi.org/10.1016/j.compstruct.2021.113968. 
  57. Raza, A., A. ur Rehman, B. Masood and Hussain I. (2020), "Finite element modelling and theoretical predictions of FRP-reinforced concrete columns confined with various FRP-tubes." Struct., 26, 626-638. https://doi.org/10.1016/j.istruc.2020.04.033. 
  58. Raza, A., Khan, Q.U.Z. and Ahmad, A. (2019), "Numerical investigation of load-carrying capacity of GFRP-reinforced rectangular concrete elements using CDP model in ABAQUS", Adv. Civil Eng., 2019, 1-21. https://doi.org/10.1155/2019/1745341. 
  59. Raza, A., Khan, Q.Z. and Ahmad, A. (2020a), "Reliability analysis of put forwarded capacity equation for predicting the behavior of steel-tube concrete columns confined with CFRP sheets", Comput. Concrete, 25(5), 383-400. https://doi.org/10.12989/cac.2020.25.5.383. 
  60. Raza, A., Shah, S.A.R., Khan, A.R., Aslam, M.A., Khan, T.A., Arshad, K., Hussan, S., Sultan, A., Shahzadi, G. and Waseem, M. (2020b), "Sustainable FRP-confined symmetric concrete structures, an application experimental and numerical validation process for reference data", Appl. Sci., 10(1), 333. https://doi.org/10.3390/app10010333. 
  61. Raza, A., Khan, Q.U.Z. and Ahmad, A. (2021b), "Investigation of HFRC columns reinforced with GFRP bars and spirals under concentric and eccentric loadings", Eng. Struct., 227, 111461. https://doi.org/10.1016/j.engstruct.2020.111461. 
  62. Rebarth, K. and Wu, H. (2006), "Efficient nonlinear finite element modeling of slab on steel stringer bridges", Finite Elem. Anal. Des., 42(14-15), 1304-1313. https://doi.org/10.1016/j.finel.2006.06.004. 
  63. Samani, A.K. and Attard, M.M. (2012), "A stress-strain model for uniaxial and confined concrete under compression", Eng. Struct., 41, 335-349. https://doi.org/10.1016/j.engstruct.2012.03.027. 
  64. Saranya, P., Nagarajan, P. and Shashikala, A. (2020), "Behaviour of GGBS-dolomite geopolymer concrete short column under axial loading", J. Build. Eng., 30, 101232. https://doi.org/10.1016/j.jobe.2020.101232. 
  65. Shahmansouri, A.A., Bengar, H.A. and Ghanrebari, S. (2020), "Compression strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method", J. Build. Eng., 31, 101326. https://doi.org/10.1016/j.jobe.2020.101326. 
  66. Shamili, S., Natarajan, C. and Karthikeyan, J. (2017), "An overview of electronic waste as aggregate in concrete", Int. J. Struct. Constr. Eng., 11(10), 1423-1427. 
  67. Shehata, I.A., Carneiro, L.A. and Shehata, L.C. (2002), "Strength of short concrete columns confined with CFRP sheets", Mater. Struct., 35(1), 50-58. https://doi.org/10.1007/BF02482090. 
  68. Shi, Y., Swait, T. and Soutis, C. (2012), "Modelling damage evolution in composite laminates subjected to low velocity impact", Compos. Struct., 94(9), 2902-2913. https://doi.org/10.1016/j.compstruct.2012.03.039. 
  69. Tafheem, Z., Rakib, R.I., Esharuhullah, M., Alam, S.R. and Islam, M.M. (2018), "Experimental investigation on the properties of concrete containing post-consumer plastic waste as coarse aggregate replacement", J. Mater. Eng. Struct., 5(1), 23-31. 
  70. Tahenni, T., Bouziadi, F., Boulekbache, B. and Amziane, S. (2021), "Experimental and nonlinear finite element analysis of shear behaviour of reinforced concrete beams", Struct., 29, 1582-1596. https://doi.org/10.1016/j.istruc.2020.12.043. 
  71. Tobbi, H., Farghaly, A.S. and Benmokrane, B. (2014), "Behavior of concentrically loaded fibre-reinforced polymer reinforced concrete columns with varying reinforcement types and ratios", ACI Struct. J., 111(2), 375-386. https://doi.org/10.14359/51686528. 
  72. Triantafyllou, G., Rousakis, T.C. and Karabinis, A.I. (2017), "Corroded RC beams patch repaired and strengthened in flexure with fibre-reinforced polymer laminates", Compos. Part B, Eng., 112, 125-136. https://doi.org/10.1016/j.compositesb.2016.12.032. 
  73. Turvey, G. and Zhang, Y. (2006), "A computational and experimental analysis of the buckling, postbuckling and initial failure of pultruded GRP columns", Comput. Struct., 84(22-23), 1527-1537. https://doi.org/10.1016/j.compstruc.2006.01.028. 
  74. Ullah, Z., Qureshi, M.I., Ahmad, A., Khan, S.U. and Javaid, M.F. (2021), "An experimental study on the mechanical and durability properties assessment of E-waste concrete", J. Build. Eng., 38, 102177. https://doi.org/10.1016/j.jobe.2021.102177. 
  75. Wang, J. and Chen, Y. (2006), ABAQUS Application in Civil Engineering, Zhejiang University Press, China. 
  76. Yang, J.M., Min, K.H., Shin, H.O. and Yoon, Y.S. (2012), "Effect of steel and synthetic fibres on flexural behavior of high-strength concrete beams reinforced with FRP rebars", Compos. Part B, Eng., 43(3), 1077-1086. https://doi.org/10.1016/j.compositesb.2012.01.044. 
  77. Zhang, X. and Deng, Z. (2018), "Experimental study and theoretical analysis on axial compression behavior of concrete columns reinforced with GFRP rebars and PVA fibres", Constr. Build. Mater., 172, 519-532. https://doi.org/10.1016/j.conbuildmat.2018.03.237.