DOI QR코드

DOI QR Code

Analytical Evaluation of High Velocity Impact Resistance of Two-way RC Slab Reinforced with Steel Fiber and FRP Sheet

강섬유 및 FRP Sheet로 보강한 2방향 RC 슬래브의 고속 충격저항성능에 대한 해석적 평가

  • 이진영 (고려대학교 건축사회환경공학부) ;
  • 신현오 (고려대학교 건축사회환경공학부) ;
  • 민경환 (고려대학교 방재과학기술연구소) ;
  • 윤영수 (고려대학교 건축사회환경공학부)
  • Received : 2012.09.05
  • Accepted : 2013.03.11
  • Published : 2013.05.30

Abstract

This paper presents high-velocity impact analysis of two-way RC slabs, including steel fibers and strengthening with fiber reinforced polymer (FRP) sheets for evaluating impact resistance. The analysis uses the LS-DYNA program, which is advanced in impact analysis. The present analysis was performed similarly to the high-velocity impact tests conducted by VTT, the technical research center of Finland, to verify the analysis results. High-velocity impact loads were applied to $2100{\times}2100{\times}250$ mm size two-way RC slab specimens, using a non-deformable steel projectile of 47.5kg mass and 134.9m/s velocity. In this research, extra impact analysis of material specimens was carried out to verify the material models used to the analysis. The elastic-plastic hydrodynamic model, concrete damage model and orthotropic elastic model were used to simulate the non-linear softening behavior of steel fiber reinforced concrete (SFRC), and material properties of normal concrete and FRP sheets, respectively. It is concluded that the suggested analysis technique has good reliability, and can be effectively applied in evaluating the effectiveness of reinforcing/retrofitting materials and techniques. Also, the Steel fiber and FRP sheet strengthening systems provided outstanding performance under high-velocity impact loads.

본 연구에서는 강섬유와 FRP 시트에 의한 충격 저항성능 향상 효과를 평가하기 위하여 고속 충격하중을 받는 2방향 RC 슬래브에 대한 유한요소 해석을 수행하였다. 유한요소 해석 프로그램으로는 충격해석에 탁월하다고 알려진 LS-DYNA를 사용하였으며, 실험결과와의 비교를 위하여 핀란드 VTT 연구소에서 수행한 고속 충격 실험과 동일한 조건으로 해석을 수행하였다. $2100{\times}2100{\times}250$ mm의 RC 슬래브에 강 (steel)발사체를 통해 충격하중을 가하였으며 발사체의 무게는 47.5kg, 속도는 134.9m/s였다. 본 연구에서는 별도의 재료부재에 대한 충격실험을 통해 해석에 사용할 재료 모델을 검증하였다. 본 해석에서는 SFRC의 비선형적 연화 현상을 모사하기 위해 elastic-plastic hydro model을 적용하였으며, 보통콘크리트와 FRP의 재료모델을 모사하기 위해서 concrete damage model과 orthotropic elastic model을 각각 사용하였다. 해석 결과, 제안된 해석 기법은 충분한 신뢰성을 가지고 있으며, 보강 재료와 보강 기법의 유효성을 평가하는데 효과적으로 적용할 수 있을 것으로 판단된다. 또한 강섬유와 FRP Sheets 보강방법은 고속충격하중에서 우수한 충격 저항 성능을 보여주는 것을 확인하였다.

Keywords

References

  1. Al-Hassani, S. T. S. and Kaddour, A. S., "Strain Rate Effect on GRP, KRP and CFRP Composite Laminates", Key Engineering Materials, vol. 141-143, No. 2, 1998, pp.427-452. https://doi.org/10.4028/www.scientific.net/KEM.141-143.427
  2. Ari Vepsa, "Experimental tests for bending and punching behaviour of reinforced concrete walls under impact loading", VTT-R-05587-10 VTT, Finland, 2010, pp.1-158.
  3. Chen, C. C. and Li, C. Y., "Punching Shear Strength of Reinforced Concrete Slabs Strengthened with Glass Fiber Reinforced Polymer Laminates", ACI Structural Journal, vol. 102, No. 4, 2005, pp.535-542.
  4. Hallquist, J. O., LS-DYNA Theoretical Manual. Livermore Software Technology Corporation, 2006, pp.1-18.
  5. Kim, H. J., Nam, J. W., Kim, S. B., Kim, J. H., Byun, K. J., "Analytical Evaluations of the Retrofit Performances of Concrete Wall Structures Subjected to Blast Load", Journal of Korea Concrete Institute, vol. 19, No. 2, 2007, pp.241-250. (in Korean) https://doi.org/10.4334/JKCI.2007.19.2.241
  6. Kim, M. H., Min K. H., Yoo, D. Y., Yoon, Y. S., "Strengthening Effect of CFRP Sheets and Steel Fibers for Enhancing the Impact Resistance of RC Beams", Journal of The Korean Society of Hazard Mitigation, vol. 11, No. 5, 2011, pp.41-47. (in Korean)
  7. Lee, J. Y., Kim, M. H., Min, K. H., Yoon, Y. S., "Analysis of Behaviors of Concrete Strengthened with FRP Sheets and Steel Fibers under Low-Velocity Impact Loading", Journal of the Korea Institute for Structural Maintenance Inspection, vol. 15, No. 4, 2011, pp.155-164. (in Korean)
  8. Livermore Software Technology Corporation (LSTC), LS-DYNA Keyword User's Manual Version971. Livermore Software Technology Corporation, 2007, pp.1447-1451.
  9. Magallanes, J. M., Wu, Y. and Malvar, L. J., "Recent Improvements to Release III of the K&C Concrete Model", 11th International LS-DYNA Users Conference, Michigan (USA), 2010, pp.3-37.
  10. Malvar, L. J. and Grwford, J. E., "Dynamic Increase Factors for Concrete", 28th DDESB Seminar. Orlando (USA), 1998, pp.1-18.
  11. Min K. H., Shin, H. O., Yoo, D. Y., Yoon, Y. S., "Flexural and Punching Behaviors of Concrete Strengthening with FRP Sheets and Steel Fibers under Low-Velocity Impact Loading", Journal of Korea Concrete Institute, vol. 23, No. 1, 2011, pp.31-38. (in Korean) https://doi.org/10.4334/JKCI.2011.23.1.031
  12. Schwer, L. E. and Malvar, L. J., "Simplified Concrete Modeling with MAT_CONCRET_DAMAGE_MODEL_REL 3", JRI LS-DYNA user week, Nagoya (Japan), 2005, pp.1-14.
  13. Tavarez, F. A., Bank, L. C. and Plesha M. E., "Analysis of Fiber-Reinforced Polymer Composite Grid Reinforced Concrete Beam", ACI Structural Journal, vol. 100, No. 2, 2003, pp.250-258.
  14. Teng, T. L., Chu, Y. A., Chang, F. A., Shen, B. C. and Cheng, D. S., "Development and validation of numerical model of steel fiber reinforced concrete for high-velocity impact", Computational Materials Science, vol. 42, No. 1, 2008, pp.90-99. https://doi.org/10.1016/j.commatsci.2007.06.013
  15. Zhou, X. Q. and Hao, H., "Modelling of Compressive Behaviour of Concrete-Like Materials at High Strain Rate", International Journal of Solids and Structure, vol. 45, No. 17, 2008, pp.4648-4661. https://doi.org/10.1016/j.ijsolstr.2008.04.002

Cited by

  1. Improvement of the Strength Properties and Impact Resistance of the Cement Composite Materials by the use of Surface Modification of the Aramid Fibers vol.19, pp.1, 2015, https://doi.org/10.11112/jksmi.2015.19.1.100
  2. Experiment and Simulation Study on the Dynamic Response of RC Slab under Impact Loading vol.2021, pp.None, 2013, https://doi.org/10.1155/2021/7127793