Browse > Article
http://dx.doi.org/10.4334/JKCI.2011.23.4.413

Flexural Strength and Deflection Evaluation for FRP Bar Reinforced HSC Beams with Different Types of Reinforcing Bar and Fiber  

Yang, Jun-Mo (School of Civil, Environmental and Architectural Engineering, Korea University)
Yoo, Doo-Yeol (School of Civil, Environmental and Architectural Engineering, Korea University)
Shin, Hyun-Oh (School of Civil, Environmental and Architectural Engineering, Korea University)
Yoon, Young-Soo (School of Civil, Environmental and Architectural Engineering, Korea University)
Publication Information
Journal of the Korea Concrete Institute / v.23, no.4, 2011 , pp. 413-420 More about this Journal
Abstract
The test results of high-strength concrete beam specimens, which have various combinations of different types of flexural reinforcement and short fibers, were compared with the prediction results of codes, guidelines and models proposed by researchers. The theoretical calculation based on the ultimate strength method of the KCI and ACI Code underestimated the ultimate moments of FRP bar-reinforced beams without fibers. The models proposed by ACI 544.4R and Campione predicted the ultimate moment capacities inaccurately for the FRP bar-reinforced beam with steel fibers, because these models do not consider the increased ultimate compressive strain of fiber reinforced concrete. Bischoff's deflection model predicted the service load deflections reasonably well, while the deflection model of ACI Committee 440 underestimated the deflection of FRP bar-reinforced beams. Because the ACI 440 expression, used to predict member deflection, cannot directly apply to the beams reinforced with different types of reinforcing bars, an alternative method to estimate the deflections of beams with different types of reinforcing bars using the ACI 440 expression was proposed. In addition, Bischoff's approach for computing deflection was extended to include deflection after yielding of the steel reinforcement in the beams reinforced with steel and FRP bars simultaneously.
Keywords
fiber reinforced polymer (FRP) bar; fiber; deflection; flexural moment; different types of reinforcing bar;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Nanni, A., "Flexural Behavior and Design of RC Members Using FRP Reinforcement," Journal of Structural Engineering, ASCE, Vol. 119, No. 11, 1993, pp. 3344-3359.   DOI   ScienceOn
2 American Concrete Institute (ACI), "Design Considerations for Steel Fiber Reinforced Concrete," ACI 544.4R-88 (Reapproved 1999), Farmington Hills, MI, 1988, 18 pp.
3 Swamy, R. N. and Al-Taan, S. A., "Deformation and Ultimate Strength in Flexure of Reinforced Concrete Beams Made with Steel Fiber Concrete," ACI Journal Proceedings, Vol. 78, No. 5, 1981, pp. 395-405.
4 Campione, G., "Simplified Flexural Response of Steel Fiber-Reinforced Concrete Beams," Journal of Materials in Civil Engineering, Vol. 20, No. 4, 2008, pp. 283-293.   DOI   ScienceOn
5 American Concrete Institute (ACI), "Guide for the Design and Construction of Concrete Reinforced with FRP Bars," ACI 440.1R-06, Farmington Hills, MI, 2006, 44 pp.
6 Hassoun, M. N. and Sahebjam, K., "Plastic Hinge in Two-Span Reinforced Concrete Beams Containing Steel Fibers," Proceedings of Canadian Society for Civil Engineering, Montreal, QC, 1985, pp. 119-139.
7 Abdul-Ahad, R. B. and Aziz, O. Q., "Flexural Strength of Reinforced Concrete T-Beams with Steel Fibers," Cement and Concrete Composite, Vol. 21, No. 4, 1999, pp. 263-268.   DOI   ScienceOn
8 Soroushian, P. and Lee, C. D., "Constitutive Modeling of Steel Fiber Reinforced Concrete under Direct Tension and Compression," Proceedings of International Conference on Recent Developments in Fibre Reinforced Cements and Concretes, Cardiff, UK, 1989, pp. 363-377.
9 Swamy, R. N. and Al-Taan, S. A.. "Deformation and Ultimate Strength in Flexure of Reinforced Concrete Beams Made with Steel Fiber Concrete," ACI Journal Proceedings, Vol. 78, No. 5, 1981, pp. 395-405.
10 Branson, D. E., Deformation of Concrete Structures, McGraw-Hill Book Co., New York, NY, 1977, 576 pp.
11 Benmokrane, B., Chaallal, O., and Masmoudi, R., "Flexural Response of Concrete Beams Reinforced with FRP Reinforcing Bars," ACI Structural Journal, Vol. 93, No. 1, 1996, pp. 46-55.
12 Canadian Standards Association (CSA), "Design and Construction of Building Components with Fibre Reinforced Polymers," CAN/CSA S806-02, Rexdale, Ont., Canada, 2002, 206 pp.
13 Toutanji, H. and Saafi, M., "Flexural Behavior of Concrete Beams Reinforced with Glass Fiber-Reinforced Polymer (GFRP) Bars," ACI Structural Journal, Vol. 97, No. 5, 2000, pp. 712-719.
14 Bischoff, P. H. and Scanlon, A., "Effective Moment of Inertia for Calculating Deflections of Concrete Members Containing Steel Reinforcement and Fiber-Reinforced Polymer Reinforcement," ACI Structural Journal, Vol. 104, No. 1, 2007, pp. 68-75.
15 Bischoff, P. H., "Deflection Calculation of FRP Reinforced Concrete Beams Based on Modifications to the Existing Branson Equation," Journal of Composites for Construction, Vol. 11, No. 1, 2007, pp. 4-14.   DOI   ScienceOn
16 Japan Society of Civil Engineers (JSCE), "Recommendation for Design and Construction of Concrete Structures Using Continuous Fiber Reinforcing Materials," Concrete Engineering Series 23, A. Machida ed., Tokyo, Japan, 1997, 325 pp.
17 이주하, 양준모, 윤영수, "2방향 슬래브의 성능 향상을 위해 집중 배근된 FRP 바의 적용," 콘크리트학회 논문집, 19권, 6호, 2007, pp. 727-734.
18 양준모, 신현오, 민경환, 윤영수, "이질 보강근 및 섬유와 함께 보강된 FRP 보강근 보강 고강도 콘크리트 보의 휨거동," 콘크리트학회 논문집, 23권, 3호, 2011, pp. 273-280.
19 한국콘크리트학회, 콘크리트 구조설계기준 해설, 기문당, 2007, 523 pp.
20 American Concrete Institute (ACI), "Building Code Requirements for Structural Concrete and Commentary," ACI 318-08 and ACI318R-08, Farmington Hills, MI, 2008, 473 pp.