DOI QR코드

DOI QR Code

Evaluation on the Thermal Resistance Capacity of Fire Proof Materials for Improving Fire Resistance of Near-Surface-Mounted FRP in Concrete

콘크리트내에 표면매입 보강된 FRP의 내화성능 향상을 위한 내화단열재 열저항성능 평가

  • 연제영 (한국교통대학교 건축공학과) ;
  • 서수연 (한국교통대학교 건축공학과)
  • Received : 2014.02.22
  • Accepted : 2014.07.04
  • Published : 2014.09.30

Abstract

This paper presents a fire exposure test result to evaluate fire resistance capacity of retrofit method using FRP (Fiber Reinforced Polymer) in reinforcement concrete structure. Especially, this paper focused on near-surface-mounted retrofit method; FRP is mounted into the groove after making a groove in concrete. In the test, main parameters are retrofit method and materials for fire proofing. Spray type of perlite and board type of calcium silicate were considered as external fire proof on surface while particle of calcium silicate and polymer mortar as internal one in groove. By increasing the temperature of inside heating furnace, the transfer of temperature from surface of fire proofing material to groove in specimen was measured. As a result, fire proofing using the board of calcium silicate was more effective to delay the heat transfer from outside than spraying with perlite. It was found that the fire proofing could resist outside temperature of $820^{\circ}C$ at maximum to keep the temperature of epoxy below glass transit temperature (GTT).

본 연구에서는 철근콘크리트 구조의 FRP를 이용한 보강에서 낮은 내화성능을 개선하기 위한 방안을 찾기 위하여, 보강된 FRP의 외부를 내화보강하는 방법에 대한 내화실험을 실시하였다. 특히 철근콘크리트 부재의 피복에 홈을 형성하여 FRP를 매입하는 보강 즉, NSM 보강을 대상으로 하였다. 실험에서의 주요 변수는 보강방법과 사용 내화재료로서, Perlite계 재료를 표면에 분사하여 보강하는 방법, Calcium silicate계 보드로 표면에 부착하는 방법, 그리고 추가로 홈내부에 Polymer mortar 또는 Calcium silicate조각을 삽입하여 보강하는 방법으로 보강한 뒤 가열로 내부의 온도변화에 따른 열전달을 관찰하였다. 실험결과, Perlite계 내화뿜칠로 표면을 보강하는 경우보다 Calcium Silicate계 내화보드로 표면을 보강하는 방법이 효과적인 것으로 나타났다. 홈 내부의 에폭시가 유리전이온도에 도달할 때의 외부 표면온도 $820^{\circ}C$까지 내화단열성능을 확보할 수 있는 것으로 나타났다.

Keywords

References

  1. Aniello Palmieri, Stijn Matthys, and Luc Taerwe (2011), Bond behavior of NSM FRP bars at elevated temperatures, first middle east conference on smart monitoring, Assessment and Rehabilitation Civil Structures.
  2. Blontrock, H., Taerwe, L., and Matthys, S. (1999), Properties of Fiber Reinforced Plastics at Elevated Temperatures with Regards to Fire Resistance of Reinforced Concrete Members, In: Fourth International Symposium on Metallic (FRP) Reinforcement for Concrete Structures, Baltimore, American Concrete Institute, 43-54.
  3. Blontrock, H., Taerwe, L., Vandevelde, P. (2001), Fire Testing of Concrete Slabs Strengthened with Fibre Composite Laminates, In The Fifth Annual Symposium on Fibre-Reinforced-Plastic Reinforcement or Concrete Structures (FRPRCS-5), Edited by C. Burgoyne, Thomas Telford, London, 547-556.
  4. Foster, S. K., and Bisby, L. A., Eng, P. (2008), Fire Survivability of Externally Bonded FRP Strengthening System, Journal of Composites for Construction, 553-561.
  5. Katz, A., and Berman, N. (2000), Modeling the Effect of High Temperature on the Bond of FRP Reinforcing bars to Concrete, Cem. Concr. Composites, 22(6), 433-443. https://doi.org/10.1016/S0958-9465(00)00043-3
  6. Moon, D. Y. (2013), Critical Temperature for Inter-Laminar Shear Strength and Effect of Exposure Time of FRP Rebars, Journal of Architectural Institute of Korea, 25(1), 45-51 (in Korean). https://doi.org/10.4334/JKCI.2013.25.1.045
  7. Seo, S. Y. (2012), Bond Strength of Near-Surface- Mounted FRP Plate in RC Member, Journal of Korea Concrete Institute, 24(4), 415-422 (in Korean). https://doi.org/10.4334/JKCI.2012.24.4.415
  8. Seo, S. Y., and Kim, J. H. (2013), Bond Capacity of Near-Surface-Mounted CFRP Plate to Concrete under Various Temperatures, Journal of the Korea Institute for Structural Maintenance and Inspection, 17(4), 75-83 (in Korean). https://doi.org/10.11112/jksmi.2013.17.4.075
  9. Seo, S. Y., and Kim, M. S. (2013), Effect of Space and Bond Length on the Bond Strength of Near Surface-Mounted FRP Plate in Concrete, Journal of Korea Concrete Institute, 25(1), 37-43 (in Korean). https://doi.org/10.4334/JKCI.2013.25.1.037
  10. Seo, S. Y., Oh, J. G., and Choi, K. B. (2011), Bond Capacity of Concrete Member Strengthened by Various Methods Using FRP Plate, Journal of Architectural Institute of Korea, 27(8), 55-63 (in Korean).
  11. Woo, P. H., et al. (2012), Evaluation of Compressive Strength of Concrete Reinforced with FRP Subjected to Temperature, Proceeding of Annual Conference, Korea Concrete Institute, 24(2), 409-410 (in Korean).

Cited by

  1. CFRP로 보강된 철근콘크리트 휨부재의 내화성능 개선을 위한 실험 vol.33, pp.12, 2017, https://doi.org/10.5659/jaik_sc.2017.33.12.19
  2. 콘크리트에 표면매립보강된 FRP의 내화단열방법에 따른 부착성능 vol.35, pp.1, 2019, https://doi.org/10.5659/jaik_sc.2019.35.1.3
  3. 콘크리트내 표면매립보강된 FRP의 내화단열방법과 연단거리에 따른 온도변화 vol.35, pp.11, 2014, https://doi.org/10.5659/jaik_sc.2019.35.11.137