• Title/Summary/Keyword: FOOD ORGANISMS

Search Result 516, Processing Time 0.03 seconds

Present and Perspective on Insect Biotechnology (곤충생물공학의 현재와 전망)

  • Choi, Hwan-Suk;Kim, Sun-Am;Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.30 no.6
    • /
    • pp.257-267
    • /
    • 2015
  • Insects are the most successful organisms on earth in terms of their diversity and adaptability. Insect biotechnology using this insect resource is an emerging area for future biotechnology with various applications. Insect resources have long been used to make food and/or functional food, feed, cosmetics as well as medicine and industrial ingredients. Recently, one of the most well-known industrial material from insect is spider silk that could be commercialize in near future. The insect cell lines have been used to express recombinant proteins that were difficult to be functional expression. For public purpose, while, the insect could be good amenity source and plant farming, so leisure resource. Only the interdisciplinary research will guarantee the successful story for insect biotechnology. And biochemical engineers should used insect as a bioresource for new products with applications in medicine, agriculture, and industrial biotechnology in near future. This review will cover state-of-the art of this field and the research and application areas of insect biotechnology and the possible role of biochemical engineer for the development of the future biotechnology using this bioresource.

Current status in calcium biofortification of crops (작물의 생합성 칼슘 함량 증대 연구 현황)

  • Lee, Jeong-Yeo;Nou, Ill-Sup;Kim, Hye-Ran
    • Journal of Plant Biotechnology
    • /
    • v.39 no.1
    • /
    • pp.23-32
    • /
    • 2012
  • Calcium is an essential nutrient for living organisms, with key structural and signaling roles. Its deficiency in plants can result in poor biotic and abiotic stress tolerance as well as reduced crop quality and yield. Calcium deficiency in humans causes various diseases such as osteoporosis and rickets. Biofortification of calcium in various food crops has been suggested as an economic and environmentally advantageous method to enhance human intake of calcium. Recent efforts to increase the levels of calcium in food crops have used calcium/proton antiporters ($CAXs$) and modified one to increase calcium transport into vacuoles through genetic engineering. It has been reported that overall calcium content of transgenic plants has been increased in their edible portions with some adverse effects. In conclusion, biofortification of calcium will add more value in crops as well as will be beneficial for animal and human. Therefore, more fundamental studies on the mechanisms of calcium ion storage and transporting are essential for more effective calcium biofortification.

Essential Cysteine Residues of Yeast Thioredoxin 2 for an electron donor to Thioredoxin Peroxidases

  • Lee, Song-Mi;Kim, Kang-Hwa;Choi, Won-Ki
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.139-143
    • /
    • 2001
  • Thioredoxin (Trx) is a redox protein possessing conserved sequence Cys-Gly-Pro-Cys in ail organisms. Trx acts as an electron donor of many proteins including thioredoxin peroxidase (TPx). Yeast Trx 2 has two redox active cysteine residues at positions 31 and 34. To investigate the redox activity of each cysteine, we generated mutants C31S, C34S, and C31S/C34S using site directed mutagenesis and examined the redox activity of Trx variants as an electron donor for yeast TPx enzymes. None of the three Cysmutated Trx proteins was active as a redox protein in the 5', 5'-dithiobis-(2-dinitrobenzoic acid) reduction under the condition of the presence of NADPH and thioredoxin reductase, and in the thioredoxin dependent peroxidase activity of yeast TPx II. C34S enhanced the glutamine synthetase protection activity of yeast TPx I, even though 100 times more protein was needed to exhibit the same activity to WT. The formation of a mixed disulfide intermediate between Trx and TPx II subunits was analyzed by SDS-PAGE. The mixed dieter form of TPx II was found only for C34S. These results suggest that Cys-31 more effectively acts as an electron donor for TPx enzymes.

  • PDF

Feeding Habit of Gobiobotia brevibarba (Cyprinidae) from the Hongcheon River, Korea (홍천강에 서식하는 돌상어 (Gobiobotia brevibarba)의 식성)

  • Choi, Jae-Suk;Kwon, Oh-Kil;Park, Jung-Ho;Byeon, Hwa-Kun
    • Korean Journal of Ichthyology
    • /
    • v.13 no.4
    • /
    • pp.230-236
    • /
    • 2001
  • Feeding habits of Gobiobotia brevibarba were investigated at Hongcheon River of Bangokri, Seomyon, Hongcheongun, Kangwondo from January to December, 2000. G. brevibarba was a carnivore and consumed mainly Ephemeroptera, Tricoptera and Diptera. Small quantities of Plecoptera and Coleoptera were included as a minor food items. The species showed ontogenetic changes in feeding habits. Individuals of small size (21~50 mm SL) fed mainly on small prey organisms such as Diptera and Ephemeroptera. However, larger Tricoptera were heavily selected with increasing fish size. The relative proportion of these food items changed with season. The prey selection indices for Ephemeroptera were positively selected in spring, summer and autumn, and negatively selected in winter, Diptera were positively selected in March, October and November.

  • PDF

Societal Implications of Biotechnology and GMOs in Agriculture (생명공학과 GMOs의 농업에 대한 사회적 함의)

  • Lim, Hyung-Baek
    • Journal of Agricultural Extension & Community Development
    • /
    • v.11 no.1
    • /
    • pp.175-189
    • /
    • 2004
  • There are many assertions related to biotechnology and genetically modified organisms(GMOs). Some experts have asserted that GM foods could be dangerous and that there is no reliable evidence that have been demonstrated safe through appropriate tests, and the others asserted these foods are as safe and nutritions as their conventional counterparts. The objectives of this study was to study an societal implications of biotechnology and GMOs in agriculture. To keep the balance in mind the researcher examined not only usefulness but also harmfulness of GMOs, along with the developmental process of biotechnology industry. It was observed that basically, multinational corporations developed GMOs to maximize their profit, and strengthened their control on agriculture and food through GMOs, as observed in alliance among big multinational corporations' food chain cluster and systems. Under the situation, farmers were losing their status as independent producer and were becoming propertied labor for multinational corporation through contract farming. If these trends continuous in the future, multinational corporations will have the control of genetic resources, these may bring about reduction of bio-diversity, thus may lead the opposite direction to eco-friendly agriculture. If multinational corporations' tendency to suppress the latent harmfulness for the profit continuous further, this may lead the degradation phase of farming and agriculture, thus leading negative socio-economic effects as well as culture and religion.

  • PDF

Functional Equivalence of Translation Factor elF5B from Candida albicans and Saccharomyces cerevisiae

  • Jun, Kyung Ok;Yang, Eun Ji;Lee, Byeong Jeong;Park, Jeong Ro;Lee, Joon H.;Choi, Sang Ki
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.172-177
    • /
    • 2008
  • Eukaryotic translation initiation factor 5B (eIF5B) plays a role in recognition of the AUG codon in conjunction with translation factor eIF2, and promotes joining of the 60S ribosomal subunit. To see whether the eIF5B proteins of other organisms function in Saccharomyces cerevisiae, we cloned the corresponding genes from Oryza sativa, Arabidopsis thaliana, Aspergillus nidulans and Candida albican and expressed them under the control of the galactose-inducible GAL promoter in the $fun12{\Delta}$ strain of Saccharomyces cerevisiae. Expression of Candida albicans eIF5B complemented the slow-growth phenotype of the $fun12{\Delta}$ strain, but that of Aspergillus nidulance did not, despite the fact that its protein was expressed better than that of Candida albicans. The Arabidopsis thaliana protein was also not functional in Saccharomyces. These results reveal that the eIF5B in Candida albicans has a close functional relationship with that of Sacharomyces cerevisiae, as also shown by a phylogenetic analysis based on the amino acid sequences of the eIF5Bs.

Antimicrobial Activity of Vaccinium macrocarpon (Cranberry) Produced Proanthocyanidin (PAC) on the Growth and Adhesion Properties of Staphylococcus aureus

  • Hui, Jonathan;Choy, John;Suwandaratne, Sid P.;Shervill, Jenna;Gan, Bing S.;Howard, Jeffrey C.;Reid, Gregor
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.1
    • /
    • pp.29-33
    • /
    • 2004
  • Cranberries have long been used by lay people to relieve the symptoms of urinary tract infections. Recent research has determined that the component of cranberry called proanthocyanidin (PAC) is the primary mechanism for inhibiting P-fimbriated E.coli adhesion to uroepithelial cells in vitro. A series of experiments were performed to determine the effects of PAC on growth and adhesion of uropathogenic E. coli and Staphylococcus aureus to urinary catheter material. The results showed that PAC-inhibited binding of Gram positive S. aureus to collagen coated surfaces and significantly decreased the growth of these bacteria. P-fimbriated E.coli did not bind well to the biomaterial and their growth was unaffected by the cranberry extract with the exception of some loss in viability at 1000 $\mu\textrm{g}$/mL after 5 to 18 hours of exposure. This is the first report of the potential for cranberries to interfere with the adhesion and growth of S. aureus, a multi-drug resistant organisms responsible for morbidity and mortality especially in hospitalized patients.

Quantitative Analysis of Leuconostoc mesenteroides and Lactobacillus plantarum Populations by a Competitive Polymerase Chain Reaction

  • Koh, Young-Ho;Kim, Myoung-Dong;Han, Nam-Soo;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.5
    • /
    • pp.801-806
    • /
    • 2002
  • A multiplex competitive polymerase chain reaction (PCR) method was developed for the rapid identification and quantification of Leuconostoc mesnteroides and Lactobacillus plantarum populations which are the key microorganisms in kimchi fermentation. The strain-specific primers were designed to selectively amplify the target genes encoding 165 rRNA of L. plantarum and dextransucrase of L. mesenteroides. There was a linear relationship between the band intensity of PCR products and the number of colony forming units of each model organism. The PCR quantification method was compared with a traditional plate-counting method f3r the enumeration of the two lactic acid bacteria in a mixed suspension culture and also applied to a real food system, namely, watery kimchi. The population dynamics of the two model organisms in the mixed culture were reliably predictable by the competitive PCR analysis.

Isolation and Characterization of a Trypsin Inhibitor and a Lectin from Glycine max cv. Large Black Soybean

  • Ye, Xiu Juan;Ng, Tzi Bun
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1173-1179
    • /
    • 2009
  • Trypsin inhibitors and lectins are defense proteins produced by many organisms. From Chinese 'Large Black Soybeans', a 60 kDa lectin and a 20 Da trypsin inhibitor (TI) were isolated using chromatography on Q-Sepharose, Mono Q, and Superdex 75. The TI inhibited trypsin and chymotrypsin with an $IC_{50}$ of 5.7 and $5{\mu}M$, respectively. Trypsin inhibitory activity of the TI was stable from pH 3 to 13 and from 0 to $65^{\circ}C$. Hemagglutinating activity of the lectin was stable from pH 2 to 13 and from 0 to $65^{\circ}C$. The TI was inhibited by dithiothreitol, signifying the importance of disulfide bond. The TI and the lectin inhibited HIV-1 reverse transcriptase ($IC_{50}$=44 and $26{\mu}M$), and proliferation of breast cancer cells ($IC_{50}$=42 and $13.5{\mu}M$) and hepatoma cells ($IC_{50}$=96 and $175{\mu}M$). The hemagglutinating activity of the lectin was inhibited most potently by L-arabinose. Neither the lectin nor the TI displayed antifungal activity.

Resource conservation using whole body autophagy: Self-digestion of shedded gut lining cells in the small intestine

  • Lee, Phil Jun;Cho, Namki;Yoo, Hee Min;Chang, Sun-Young;Ko, Hyun-Jeong;Kim, Hong Pyo
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.244-248
    • /
    • 2020
  • To retain valuable resources, organisms adopt several strategies including coprophagy. Cells covering the outer skin and internal digestive lumen are actively recycled to maintain their integrity. In present study, we suggested that the small intestine can consume dead cells in a manner similar to how it consumes protein from the diet. We examined the eluates from five segments of the mouse small intestine and cecum and 2 segments of the large intestine and small intestine tissue, and detected immunoreactivity with eukaryotic caveolin-1 and β-actin antibodies only in the cecum and 2 segments from the large intestine. Bacterial agitation of the mouse intestine with Shigella disrupted the architecture and absorptive function of the small intestine. Small intestine eluates were immunoreactive with murine caveolin-1 and contained heme as determined by dot blot analysis. We concluded that the body conserves resources in the small intestine by disposing of and recycling shedded cells.