• Title/Summary/Keyword: FLEX

Search Result 448, Processing Time 0.03 seconds

Washing of Pigment Dyed Fabrics (시판 피그먼트 염색직물의 워싱가공에 관한 연구)

  • Lee, Hye-Ja;Yoo, Hye-Ja
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.8
    • /
    • pp.1169-1177
    • /
    • 2006
  • The aim of this study was to investigate the change of the weight loss, tensile strength, flex stiffness, and color-values of the pigment-dyed cotton, polyester/cotton, polyester and nylon fabrics after washing process. Pigment-dyed cotton and polyester/cotton fabrics were treated with the cellulase, of which concentrations were 0, 1, 3 and 5g/l. The time of washing process ranges from 30 to 120 minutes. Pigment-dyed polyester and nylon fabrics were treated without enzyme, of which the washing temperature were 13, 30, $55^{\circ}C$ and the washing time ranges from 30 to 120 minutes. Also, they were tested in terms of the influences of agitation speed(rpm) and additives such as softeners, enzymes, detergents. The weight loss and tensile strength of the pigment-dyed cotton and polyester/cotton fabrics were positively correlated with the concentration of cellulase and washing time. Neither polyester nor nylon fabrics exhibited any change of the weight. All fabrics showed the decline of flex stiffness and decoloration after washing process. Decoloration of cotton and polyester/cotton fabrics was due to both the influence of cellulase and the mechanical rubbing. On the other hand, that of polyester and nylon fabrics was caused by the mechanical rubbing only.

Docking and Virtual Screening Studies for New Leads of Boar Salivary Lipocalin

  • Sung, Nack-Do;Park, Chang-Sik;Park, Hyung-Yeon;Kim, Chan-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.959-962
    • /
    • 2008
  • We have performed FlexX docking experiments to predict the best docking poses of 5-androst-16-en-3-ol or 5-androst-16-en-3-one to Boar salivary lipocalin (SAL). Since no steroids were found inside of the binding pocket of the X-ray structure of 1GM6, we tried to find docking structures after opening the pocket using the random tweak option implemented in SYBYL. This operation allowed the ligand to enter the pocket. The best poses generated from FlexX were different from the structures reported earlier, which calculated docking poses by manual docking followed by minimization. Analysis of docking poses allowed us to identify pharmacophores. From this information, virtual screening experiments using UNITY were performed. Among six candidates, 3-(3,7-dimethyloct-6-enylamino)propane-1,2-diol (Leadquest code name: 5755) was chosen for further development. Future work will involve synthesis of some derivatives of 5755 and biological experiments if any derivatives can control the biostimulation and improve reproductive efficiency in pigs.

The Effect of Fusible Interlining on the Appearance related Properties & Mechanical Characteristics of the Lyocell Fabrics(II) (리오셀직물의 심지접착에 따른 외관적 성능 및 역학적 특성(II))

  • 김인영;오수민;송화순
    • Journal of the Korean Home Economics Association
    • /
    • v.40 no.7
    • /
    • pp.15-24
    • /
    • 2002
  • In this work, the effect of fusible interlining on the appearance related properties and mechanical characteristics of Lyocell fabric after fusing was investigated. Two different types(20's and 10's) of Lyocell face fabric with six different interlining(by thickness and structure) for earth Lyocell fabric were examined. In order to establish the optimum fusing condition for the different face fabric and interlining, peel strength of each fused fabric was measured, which was dependent on the fusing temperature, pressure, and time. The characteristics related appearance and mechanical characteristics of each fused fabric were determined. The results are as follows: The peel strength was excellent, when the fabric was fused with the force of 3kgf/$textrm{cm}^2$ at $120^{\circ}C$ for 15seconds. Flex stiffness, G, 2HG, 2HG5(shear), B, 2HB(bending) of 100% Lyocell fabric 10's were higher than those of 100% Lyocell 20's. Flex stiffness, crease recovery, G, 2HG, B, 2HB of thicker woven interlining were higher than those of thinner woven interlining. Crease recovery of twill interlining were higher than those of plain interlining. In case of shear and bending properties, however, plain interlining was higher than twill interlining. Flex stiffness, crease recovery, G, 2HG, 2HG5, B, 2HB of nonwoven interlining were higher than those of woven interlining. In case of drapability, however, woven interlining was higher than nonwoven interlining.

Reinforcement Learning based Job Dispatching Model for Single Machine with Sequence Dependent Setup Time (순서 의존적 작업 준비시간을 갖는 단일기계 작업장을 위한 강화학습 기반 작업 배정 모형)

  • Jin-Sung Park;Jun-Woo Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.327-329
    • /
    • 2023
  • 순서 의존적 준비시간을 갖는 단일기계 생산라인에서 주어진 작업들을 효율적으로 수행하기 위해서는 최대한 동일하거나 유사한 유형의 작업물들을 연속적으로 처리하여 다음 번 작업물의 처리를 시작하기 전에 발생하는 준비시간을 최소화하여야 한다. 따라서, 대기 중인 것들 중 기계에 투입할 작업물을 적절히 선택하는 것이 중요하며, 이를 위해 작업 배정 규칙과 같은 휴리스틱을 사용할 수도 있지만, 이러한 해법들은 일반적으로 다양한 상황을 동적으로 고려하지 못하는 한계점을 갖는다. 따라서, 본 논문에서는 상용 3D 시뮬레이션 소프트웨어인 FlexSim을 사용하여 모형을 구성한 다음, 강화학습을 적용하여 대기 중인 작업물 중 최적의 후보를 선택하기 위한 작업 배정 모형을 개발하고자 한다. 세부적으로는 강화학습의 상태 및 보상을 달리 설정하면서 학습된 모형의 성능을 비교하고자 한다. 실험 결과를 통해 적절한 시뮬레이션 모형 구성과 강화학습의 파라미터 변수들을 적절히 조합하여 적절한 작업 배정 모형의 개발이 가능하다는 점을 알 수 있었다.

  • PDF

Production of Flavonoid Compounds and Anti-inflammatory Property of Fermented Licorice Extract with the Basidiomycete Grifola frondosa HB0071 (잎새버섯 균사체를 이용한 감초추출발효물의 플라보노이드 생성과 항염 활성 연구)

  • Bae, Jun Tae;Song, Min Hyeon;Kim, Jin Hwa;Lee, Geun Soo;Pyo, Hyeong Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.38 no.4
    • /
    • pp.327-338
    • /
    • 2012
  • Liquiritigenin and isoliquiritigenin are the major flavonoids present in licorice. These flavonoid compounds were prepared by submerged culture of Grifola frondosa (G. frondosa) HB0071 mycelia producing ${\beta}$-glucosidase in the aqueous extract of licorice. The contents of liquiritigenin and isoliquiritigenin were increased during the fermentation. This fungus produced a high ${\beta}$-glucosidase (activity of 91.5 mU/mL), thereby achieving high amounts of liquiritigenin and isoliquiritigenin ($568.5{\mu}g/mL$ and $89.6{\mu}g/mL$), respectively at 96 h. A reversed- phase high-performance liquid chromatography method was established for simultaneous determination of liquiritigenin and isoliquiritigenin in fermented licorice extract (FLEx). The anti-inflammatory activities were investigated by licorice extract (LEx) before and after fermentation with G. frondosa HB0071. The treatment of UVB-irradiated HaCaT keratinocytes with FLEx resulted in a dose-dependent decrease in the expression level of cyclooxygenase-2 (COX-2) mRNA. Furthermore, FLEx dose-dependently decreased mRNA of the pro-inflammatory cytokines of IL-$1{\beta}$ and IL-6 in UVB-irradiated HaCaT cells. These results suggest that FLEx may mitigate the effects of skin inflammation by reducing UVB-induced adverse skin reactions.

Anatomy of Spleen Meridian Muscle in human (족태음비경근(足太陰脾經筋)의 해부학적(解剖學的) 고찰(考察))

  • Park Kyoung-Sik
    • Korean Journal of Acupuncture
    • /
    • v.20 no.4
    • /
    • pp.65-75
    • /
    • 2003
  • This study was carried to identify the component of Spleen Meridian Muscle in human, dividing into outer, middle, and inner part. Lower extremity and trunk were opened widely to demonstrate muscles, nerve, blood vessels and the others, displaying the inner structure of Spleen Meridian Muscle. We obtained the results as follows; 1. Spleen Meridian Muscle is composed of the muscle, nerve and blood vessels. 2. In human anatomy, it is present the difference between a term of nerve or blood vessels which control the muscle of Meridian Muscle and those which pass near by Meridian Muscle. 3. The inner composition of meridian muscle in human arm is as follows ; 1) Muscle; ext. hallucis longus tend., flex. hallucis longus tend.(Sp-1), abd. hallucis tend., flex. hallucis brevis tend., flex. hallucis longus tend.(Sp-2, 3), ant. tibial m. tend., abd. hallucis, flex. hallucis longus tend.(Sp-4), flex. retinaculum, ant. tibiotalar lig.(Sp-5), flex. digitorum longus m., tibialis post. m.(Sp-6), soleus m., flex. digitorum longus m., tibialis post. m.(Sp-7, 8), gastrocnemius m., soleus m.(Sp-9), vastus medialis m.(Sp-10), sartorius m., vastus medialis m., add. longus m.(Sp-11), inguinal lig., iliopsoas m.(Sp-12), ext. abdominal oblique m. aponeurosis, int. abd. ob. m., transversus abd. m.(Sp-13, 14, 15, 16), ant. serratus m., intercostalis m.(Sp-17), pectoralis major m., pectoralis minor m., intercostalis m.(Sp-18, 19, 20), ant. serratus m., intercostalis m.(Sp-21) 2) Nerve; deep peroneal n. br.(Sp-1), med. plantar br. of post. tibial n.(Sp-2, 3, 4), saphenous n., deep peroneal n. br.(Sp-5), sural cutan. n., tibial. n.(Sp-6, 7, 8), tibial. n.(Sp-9), saphenous br. of femoral n.(Sp-10, 11), femoral n.(Sp-12), subcostal n. cut. br., iliohypogastric n., genitofemoral. n.(Sp-13), 11th. intercostal n. and its cut. br.(Sp-14), 10th. intercostal n. and its cut. br.(Sp-15), long thoracic n. br., 8th. intercostal n. and its cut. br.(Sp-16), long thoracic n. br., 5th. intercostal n. and its cut. br.(Sp-17), long thoracic n. br., 4th. intercostal n. and its cut. br.(Sp-18), long thoracic n. br., 3th. intercostal n. and its cut. br.(Sp-19), long thoracic n. br., 2th. intercostal n. and its cut. br.(Sp-20), long thoracic n. br., 6th. intercostal n. and its cut. br.(Sp-21) 3) Blood vessels; digital a. br. of dorsalis pedis a., post. tibial a. br.(Sp-1), med. plantar br. of post. tibial a.(Sp-2, 3, 4), saphenous vein, Ant. Med. malleolar a.(Sp-5), small saphenous v. br., post. tibial a.(Sp-6, 7), small saphenous v. br., post. tibial a., peroneal a.(Sp-8), post. tibial a.(Sp-9), long saphenose v. br., saphenous br. of femoral a.(Sp-10), deep femoral a. br.(Sp-11), femoral a.(Sp-12), supf. thoracoepigastric v., musculophrenic a.(Sp-16), thoracoepigastric v., lat. thoracic a. and v., 5th epigastric v., deep circumflex iliac a.(Sp-13, 14), supf. epigastric v., subcostal a., lumbar a.(Sp-15), intercostal a. v.(Sp-17), lat. thoracic a. and v., 4th intercostal a. v.(Sp-18), lat. thoracic a. and v., 3th intercostal a. v., axillary v. br.(Sp-19), lat. thoracic a. and v., 2th intercostal a. v., axillary v. br.(Sp-20), thoracoepigastric v., subscapular a. br., 6th intercostal a. v.(Sp-21)

  • PDF