DOI QR코드

DOI QR Code

Production of Flavonoid Compounds and Anti-inflammatory Property of Fermented Licorice Extract with the Basidiomycete Grifola frondosa HB0071

잎새버섯 균사체를 이용한 감초추출발효물의 플라보노이드 생성과 항염 활성 연구

  • 배준태 (한불화장품(주) 기술연구소) ;
  • 송민현 (한불화장품(주) 기술연구소) ;
  • 김진화 (한불화장품(주) 기술연구소) ;
  • 이근수 (한불화장품(주) 기술연구소) ;
  • 표형배 (한불화장품(주) 기술연구소)
  • Received : 2012.07.11
  • Accepted : 2012.12.10
  • Published : 2012.12.30

Abstract

Liquiritigenin and isoliquiritigenin are the major flavonoids present in licorice. These flavonoid compounds were prepared by submerged culture of Grifola frondosa (G. frondosa) HB0071 mycelia producing ${\beta}$-glucosidase in the aqueous extract of licorice. The contents of liquiritigenin and isoliquiritigenin were increased during the fermentation. This fungus produced a high ${\beta}$-glucosidase (activity of 91.5 mU/mL), thereby achieving high amounts of liquiritigenin and isoliquiritigenin ($568.5{\mu}g/mL$ and $89.6{\mu}g/mL$), respectively at 96 h. A reversed- phase high-performance liquid chromatography method was established for simultaneous determination of liquiritigenin and isoliquiritigenin in fermented licorice extract (FLEx). The anti-inflammatory activities were investigated by licorice extract (LEx) before and after fermentation with G. frondosa HB0071. The treatment of UVB-irradiated HaCaT keratinocytes with FLEx resulted in a dose-dependent decrease in the expression level of cyclooxygenase-2 (COX-2) mRNA. Furthermore, FLEx dose-dependently decreased mRNA of the pro-inflammatory cytokines of IL-$1{\beta}$ and IL-6 in UVB-irradiated HaCaT cells. These results suggest that FLEx may mitigate the effects of skin inflammation by reducing UVB-induced adverse skin reactions.

리퀴리티게닌과 이소리퀴리티게닌은 감초의 주요 플라보노이드 성분이다. 이들 플라보노이드는 수용성 감초 추출물과 ${\beta}$-glucosidase를 생성하는 잎새버섯 HB0071 균사체 발효배양을 통하여 생산하였다. 감초추출물 내 리퀴리티게닌과 이소리퀴리티게닌은 잎새버섯 발효배양 동안 현저히 증가하였다. 이 균주의 ${\beta}$-glucosidase의 활성은 배양 96시간을 기준으로 최고 91.5 mU/mL로 확인되었으며, 감초추출발효물로부터 생성된 리퀴리티게닌과 이소리퀴리티게닌의 함량은 HPLC 분석을 통하여 최대 $568.5{\mu}g/mL$$89.6{\mu}g/mL$로 확인되었다. 본 연구에서는 감초추출물의 잎새버섯 발효 전 후의 시료가 처리된 각질형성세포를 이용하여 자외선 UVB에 조사로 발현된 염증유발인자(COX-2)와 사이토카인(IL-$1{\beta}$, IL-6) 모두 감초추출발효물(FLEx)에서 농도의존적으로 발현이 억제되는 것을 확인하였다. 결론적으로 리퀴리티게닌과 이소리퀴리티게닌의 함량이 증가된 감초추출발효물은 자외선으로부터 손상된 피부 염증반응을 완화시켜줄 것으로 사료된다.

Keywords

References

  1. T. Mizuno, T. Sakai, and G. Chihara, Health foods and medicinal usages of mushrooms, Food Rew. Int., 11, 69 (1995). https://doi.org/10.1080/87559129509541020
  2. B. C. Lee, J. T. Bae, H. B. Pyo, T. B. Choe, S. W. Kim, H. J. Hwang, and J. W. Yun, Biological activities of the polysaccharides produced from submerged culture of the edible basidiomycete Grifola frondosa, Enzyme Microb. Technol., 32, 574 (2003). https://doi.org/10.1016/S0141-0229(03)00026-7
  3. J. T. Bae, G. S. Sim, D. H. Lee, B. H. Lee, H. B. Pyo, T. B. Choe, and J. W. Yun, Production of exopolysaccharide from mycelia culture of Grifola frondosa and its inhibitory effect on matrix metalloproteinase- 1 expression in ultraviolet A-irradiated human dermal fibroblasts, FEMS Microbiol. Lett., 251, 347 (2005). https://doi.org/10.1016/j.femsle.2005.08.021
  4. A. G. Morgan, and W. A. McAdam, Glycyrrhiza glabra monograph, Altern. Med. Rev., 10, 230 (2005).
  5. J. Kamei, R. Nakamura, H. Ichiki, and M. Kubo, Antitussive principles of Glycyrrhiza radix, a main component of the kampo preparations bakumondo- to (Mai-men-dong-tang), Eur. J. Pharmacol., 469, 159 (2003). https://doi.org/10.1016/S0014-2999(03)01728-X
  6. M. N. Asl, and H. Hosseinzadeh, Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds, Phytother. Res., 22, 709 (2008). https://doi.org/10.1002/ptr.2362
  7. K. Shetty, Biotechnology to harness the benefits of dietary phenolics: focus on Lamiaceae. Asia Pacif. J. Clin. Nutr., 6, 162 (1997).
  8. Y. Kawakami, W. Tsurugasaki, S. Nakamura, and K. Osada, Comparison of regulative functions between dietary soy isoflavones aglycone and glucoside on lipid metabolism in rats fed cholesterol, J. Nutri. Biochem., 16, 205 (2005). https://doi.org/10.1016/j.jnutbio.2004.11.005
  9. A. A. El-Ghorr, and M. Norval, Biological effects of narrow-band (311 nm TL01) UVB irradiation: a review, J. Photochem. Photobiol. B, 38, 99 (1997). https://doi.org/10.1016/S1011-1344(96)07454-4
  10. A. Grone, Keratinocytes and cytokines, Vet. Immunol. Immunopathol., 88, 1 (2002). https://doi.org/10.1016/S0165-2427(02)00136-8
  11. J. Y. Kim, S. J. Park, K. J. Yun, Y. W. Cho, H. J. Park, and K. T. Lee, Isoliquiritigenin isolated from the root of Glycyrrhiza uralensis inhibits LPS-induced iNOS and COX-2 expression via the attenuation of $NF-{\kappa}B$ in RAW 264.7 macrophages, Eur. J. Pharmacol., 584, 175 (2008). https://doi.org/10.1016/j.ejphar.2008.01.032
  12. Y. Miyake, S. Fukumoto, M. Okada, K. Sakaida, Y. Nakamura, and T. Osawa, Antioxidative catechol lignans converted from sesamin and sesaminol triglucoside by culturing with Aspergillus, J. Agric. Food Chem., 53, 22 (2005). https://doi.org/10.1021/jf048743h
  13. S. Ibe, K. Kumada, M. Yoshiba, and T. Onga, Production of natto which contains a high level of isoflavone aglycons, J. Jpnese. Soc. Food Sci. Tech., 48, 27 (2001). https://doi.org/10.3136/nskkk.48.27
  14. S. Hendrich, Bioavailability of isoflavones, J. Chromatogr. B, 777, 203 (2002). https://doi.org/10.1016/S1570-0232(02)00347-1
  15. J. H. Kim, J. T. Bae, M. H. Song, G. S. Lee, S. Y. Choe, and H. B. Pyo, Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans, J. Nutr., 130, 1695 (2000).
  16. P. P. McCue, and K. Shetty, Phenolic antioxidant mobilization during yogurt production from soymilk using Kefir cultures, Proc. Biochem., 40, 1791 (2005). https://doi.org/10.1016/j.procbio.2004.06.067
  17. H. Sakakibara, Y. Honda, S. Nakagawa, H. Ashida, and K. Kanazawa, Simultaneous determination of all polyphenols in vegetables, fruits, and teas, J. Agric. Food Chem., 51, 571 (2003). https://doi.org/10.1021/jf020926l
  18. H. Yang, and L. Zhang, Change in some components of soymilk during fermentation with the basidiomycete Ganoderma lucidum, Food Chem., 112, 1 (2009). https://doi.org/10.1016/j.foodchem.2008.05.024
  19. C. J. Ma, G. S. Li, D. L. Zhang, K. Liu, and X. Fan, One step isolation and purification of liquiritigenin and isoliquiritigenin from Glycyrrhiza uralensis Risch. Using high-speed counter-current chromatography, J. Chromagr. A, 1078, 188 (2005). https://doi.org/10.1016/j.chroma.2005.01.053
  20. S. Jean-Emmanuel, and G. Ziya, Plant and microbial glycoside hydrolases: volatile release from glycosidic aroma precursors, Food Chem., 87, 509 (2004). https://doi.org/10.1016/j.foodchem.2004.01.003
  21. T. Miura, L. Yuan, B. Sun, H. Fujii, M. Yoshida, K. Wakame, and K. Kosuna, Isoflavone aglycon produced by culture of soybean extracts with basidiomycetes and its anti-angiogenic activity, Biosci. Biotech. Biochem., 66, 2626 (2002). https://doi.org/10.1271/bbb.66.2626
  22. E. Wollenweber and V. H. Deitz, Occurrence and distribution of free flavonoid aglycones in plants, Phytochemistry, 20, 869 (1981). https://doi.org/10.1016/0031-9422(81)83001-4
  23. Y. C. Wang and Y. S. Yang, Simultaneous quantification of flavonids and triterpenoids in licorice using HPLC, J. Chromatogr. B, 850, 392 (2007). https://doi.org/10.1016/j.jchromb.2006.12.032
  24. H. Li, B. T. Chen, L. Liu, and Q. Liu, Simultaneous determination of six compounds in licorice and related Chinese herb al preparations Chromatographia, 69, 229 (2009). https://doi.org/10.1365/s10337-008-0895-9
  25. J. L. Marx, Oxygen free radicals linked to many diseases, Science, 235, 529 (1987). https://doi.org/10.1126/science.3810154
  26. M. Yaar and B. A. Gilchrest, Photoageing: mechanism, prevention and therapy, Br. J. Dermatol., 157, 874 (2007). https://doi.org/10.1111/j.1365-2133.2007.08108.x
  27. N. S. Fernau, D. Fugmann, M. Leyendecker, K. Reimann, S. Gerther-Berk, S. Galban, N. Ale- Agha, J. Krutmann, and L. O. Klotz, Role of HuR and p38 MAPK in ultraviolet B-induced posttranscriptional regulation of COX-2 expression in the human keratinocyte cell line HaCaT, J. Biol. Chem., 285, 3896 (2010). https://doi.org/10.1074/jbc.M109.081430
  28. Y. W. Kim, R. J .Zhao, S. J. Park, J. R. Lee, I. J. Cho, C. H. Yang, S. G. Kim, and S. C. Kim, Anti-inflammatory effects of liquiritigenin as a consequence of the inhibition of NF-${\kappa}B$-dependent iNOS and proinflammatory cytokines production, Br. J. Pharmacol., 154, 165 (2008). https://doi.org/10.1038/bjp.2008.79

Cited by

  1. Inhibitory effect of mushrooms extract on TNF-α/INF-γ induced-cytokine in human keratinocytes, HaCaT vol.13, pp.3, 2015, https://doi.org/10.14480/JM.2015.13.3.170