Despite the noteworthy increase in the number of FL anxiety studies, inconsistencies associated with the effects of FL anxiety on language learner performance have been reported in literature. Such conflicting results seem to be attributable in part to unstable conceptualization of the FL anxiety construct and its measure. This paper purported to address the emerging call for a theoretical clarification of the construct at hand as a preface to a clear picture of language anxiety on a conceptual ground. This paper not only covers aspects of general anxiety from psychological perspectives, but examines how FL anxiety and its associated concepts have been conceptualized in the literature. Inconsistent results that pertain to FL learning were also delineated. Given the drawbacks found in the exiting theories of FL anxiety, several points were taken into account for a refinement of the conceptual framework. This attempt will hopefully shed new light on the construct per se and prove conducive to the development of the field of English education.
Firdaus, Muhammad;Latt, Cho Nwe Zin;Aguilar, Mariz;Rhee, Kyung-Hyune
Proceedings of the Korea Information Processing Society Conference
/
2022.05a
/
pp.264-267
/
2022
Recently, federated learning (FL) has increased prominence as a viable approach for enhancing user privacy and data security by allowing collaborative multi-party model learning without exchanging sensitive data. Despite this, most present FL systems still depend on a centralized aggregator to generate a global model by gathering all submitted models from users, which could expose user privacy and the risk of various threats from malicious users. To solve these issues, we suggested a safe FL framework that employs differential privacy to counter membership inference attacks during the collaborative FL model training process and empowers blockchain to replace the centralized aggregator server.
Objectives: Food literacy (FL) can be an important concept that embodies the nutritional capabilities of individuals. The purpose of this study was to introduce the definition and core elements of FL from previous literature, to summarize measurement tools and intervention programs with FL, and to suggest the direction of future research and programs to integrate the concept of FL. Methods: The literature review was conducted through PubMed and Google Scholar databases by combining the search term 'food literacy' with 'definition', 'measurement', 'questionnaire', 'intervention', and 'program'. Among the 94 papers primarily reviewed 31 manuscripts that suited the purpose of the study were used for analyses. Results: There is no consensus on the definition of FL that encompasses the multidimensional aspects of the concept. The definitions of FL were slightly different depending on the authors, and the interpretation of the core elements also varied. Based on the review, we propose a framework of FL that is in line with the current discussion among international researchers. This focuses on the core elements adapted from health literacy, namely functional, interactive, and critical FL. Specifically, we suggest some detailed elements for interactive and critical FL, which were often the subject of divergent views among researchers in previous literature. We found that most of the tools in the reviewed literature provided information on validity and reliability and were developed for a specific target population. Also, most of the tools were focused on functional FL. Similarly, most of the interventions targeted functional FL. Conclusions: This study reviewed the definition and core elements of FL, available measurement tools, and intervention programs using validated tools. We propose the development of tools with sound reliability and validity that encompass the three core elements of FL for different age groups. This will help to understand whether improving food literacy can translate into better nutritional intake and health status among individuals and communities.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.6
/
pp.1462-1477
/
2024
With the evolving complexity of connected vehicle features, the volume and diversity of data generated during driving continue to escalate. Enabling data sharing among interconnected vehicles holds promise for improving users' driving experiences and alleviating traffic congestion. Yet, the unintentional disclosure of users' private information through data sharing poses a risk, potentially compromising the interests of vehicle users and, in certain cases, endangering driving safety. Federated learning (FL) is a newly emerged distributed machine learning paradigm, which is expected to play a prominent role for privacy-preserving learning in autonomous vehicles. While FL holds significant potential to enhance the architecture of the Internet of Vehicles (IoV), the dynamic mobility of vehicles poses a considerable challenge to integrating FL with vehicular networks. In this paper, a novel clustered FL framework is proposed which is efficient for reducing communication and protecting data privacy. By assessing the similarity among feature vectors, vehicles are categorized into distinct clusters. An optimal vehicle is elected as the cluster head, which enhances the efficiency of personalized data processing and model training while reducing communication overhead. Simultaneously, the Local Differential Privacy (LDP) mechanism is incorporated during local training to safeguard vehicle privacy. The simulation results obtained from the 20newsgroups dataset and the MNIST dataset validate the effectiveness of the proposed scheme, indicating that the proposed scheme can ensure data privacy effectively while reducing communication overhead.
This paper attempts to focus the ways in which Seoul as an urban space can be read and interpreted from gender perspective, assuming Seoul as a cultural text which represents modernity and post-modernity. Drawing on discussions of urban sociology and human geography which have analyzed the relationship between material spaces and social subjects, this paper explores the gendered segregation and representations of space in Seoul which has been constructed through the process of modernization. The framework of spatial interpretation of Seoul, concentrating on imageablity and legibility, consists of three dimensions; gendered division of labour and sphere, dichotomy of representations along with femininity and masculinity, and the ways of interlocking between modernity and post-modernity. In this paper, 'fl$\check{a}$nerie', Benjamin's method of interpretation of urban culture and the way of seeing with 'speculum' of Irigaray are adopted as metaphoric methodologies. It is an attempt to develop a new methodology to analyze and interpret urban space from gender-cultural perspective.
Hyelim Yoo;Eunbin Jo;Hyeongyeong Lee;Eunji Ko;Eunjin Jang;Jiwon Sim;Sohyun Park
Nutrition Research and Practice
/
v.17
no.6
/
pp.1155-1169
/
2023
BACKGROUND/OBJECTIVES: Unhealthy food choices among young adults are common globally, and the incidence of chronic diseases, such as obesity, is rising. Food literacy (FL) is important for improving and maintaining individual health in a rapidly changing food environment and can form the basis for following a sustainable diet. Therefore, it is essential to improve FL among young adults, particularly college students, who are in the formative years of their lifelong food habits. This study examined the facilitators and barriers of FL and related dietary behavior among college students in South Korea. SUBJECTS/METHODS: This study recruited 25 college students with different residence types using convenience and snowball sampling. In-person, telephone, and video interviews were conducted from March to November 2021. The interview data were analyzed using framework analysis based on the socio-ecological model. RESULTS: At the individual level, prior good experiences with food were the most frequently mentioned facilitator. In contrast, the major barriers were a lack of knowledge, financial hardship, irregular schedules, and academic stress. At the interpersonal level, the influences of family and peers, such as early exposure to healthy eating habits and opportunities to have easy accessibility to farms and farming, are major facilitators, but the lack of a sense of community was the major barrier. At the environmental level, the major barriers were unfavorable food environments at home and in neighborhoods, such as the absence of kitchens in housing and large packaging of produce at markets. CONCLUSIONS: Many factors affected the students' FL and related healthy eating practices. These findings suggest that a campus-based FL program should be developed by reflecting on these facilitators and barriers.
Proceedings of the Korea Information Processing Society Conference
/
2024.05a
/
pp.711-714
/
2024
In the dynamic landscape of modern machine learning, Federated Learning (FL) has emerged as a compelling paradigm designed to enhance privacy by enabling participants to collaboratively train models without sharing their private data. Specifically, Distillation-based Federated Learning, like Federated Learning with Model Distillation (FedMD), Federated Gradient Encryption and Model Sharing (FedGEMS), and Differentially Secure Federated Learning (DS-FL), has arisen as a novel approach aimed at addressing Non-IID data challenges by leveraging Federated Learning. These methods refine the standard FL framework by distilling insights from public dataset predictions, securing data transmissions through gradient encryption, and applying differential privacy to mask individual contributions. Despite these innovations, our survey identifies persistent vulnerabilities, particularly concerning the susceptibility to logit inversion attacks where malicious actors could reconstruct private data from shared public predictions. This exploration reveals that even advanced Distillation-based Federated Learning systems harbor significant privacy risks, challenging the prevailing assumptions about their security and underscoring the need for continued advancements in secure Federated Learning methodologies.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.4
/
pp.826-842
/
2024
As 5G and AI continue to develop, there has been a significant surge in the healthcare industry. The COVID-19 pandemic has posed immense challenges to the global health system. This study proposes an FL-supported edge computing model based on federated learning (FL) for predicting clinical outcomes of COVID-19 patients during hospitalization. The model aims to address the challenges posed by the pandemic, such as the need for sophisticated predictive models, privacy concerns, and the non-IID nature of COVID-19 data. The model utilizes the FATE framework, known for its privacy-preserving technologies, to enhance predictive precision while ensuring data privacy and effectively managing data heterogeneity. The model's ability to generalize across diverse datasets and its adaptability in real-world clinical settings are highlighted by the use of SHAP values, which streamline the training process by identifying influential features, thus reducing computational overhead without compromising predictive precision. The study demonstrates that the proposed model achieves comparable precision to specific machine learning models when dataset sizes are identical and surpasses traditional models when larger training data volumes are employed. The model's performance is further improved when trained on datasets from diverse nodes, leading to superior generalization and overall performance, especially in scenarios with insufficient node features. The integration of FL with edge computing contributes significantly to the reliable prediction of COVID-19 patient outcomes with greater privacy. The research contributes to healthcare technology by providing a practical solution for early intervention and personalized treatment plans, leading to improved patient outcomes and efficient resource allocation during public health crises.
As federated learning brings a large paradigm to modern artificial intelligence research, efforts are being made to incorporate federated learning into research in various fields. However, researchers who apply federated learning face the problem of choosing a federated learning framework and benchmark tool suitable for their situation and purpose. This study aims to present guidelines for selection of federated learning frameworks and benchmark tools considering the circumstances of researchers who apply federated learning in practice. In particular, there are three main contributions in this study. First, it generalizes the situation of the researcher applying federated learning by combining it with the goal of federated learning and proposes guidelines for selecting a federated learning framework suitable for each situation. Second, it shows the suitability of selection by comparing the characteristics and performance of each federated learning framework to the researcher. Finally, the limitations of the existing federated learning framework and a plan for real-world federated learning operation are proposed.
An application of the KFLOW3D code which has been developed at KAIST is presented. This paper briefly describes the underlying methodology and summarizes the results for the DLR-F6 transport configuration recently presented in the second AIAA CFD Drag Prediction Workshop held in Orlando, FL, June 2003. KFLOW3D is a parallelized Reynolds averaged Navier-Stokes solver for multi-block structured grids. For the present computations, 2-equation k-$\omega$ WD+ nonlinear eddy viscosity model is used. The emphasis of the paper is placed on the implementation of the k-$\omega$ WD+ model in the multigrid framework and practicality of KFLOW3D for accurately predicting not only the integrated aerodynamic property such as the drag coefficient but pressure distributions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.