• Title/Summary/Keyword: FIB Application

Search Result 34, Processing Time 0.026 seconds

Evaluation of adenosine triphosphate testing for on-farm cleanliness monitoring compared to microbiological testing in an empty pig farrowing unit

  • Yi, Seung-Won;Cho, Ara;Kim, Eunju;Oh, Sang-Ik;Roh, Jae Hee;Jung, Young-Hun;Choe, Changyong;Yoo, Jae Gyu;Do, Yoon Jung
    • Journal of Animal Science and Technology
    • /
    • v.62 no.5
    • /
    • pp.682-691
    • /
    • 2020
  • Careful cleaning and disinfection of pigpens is essential to prevent disease spread and avoid the resultant economic losses. Hygiene in pigpens is generally evaluated by visual monitoring supplemented with bacteriological monitoring, which includes counting the total aerobic bacteria (TAB) and/or fecal indicator bacteria (FIB). However, these methods present drawbacks such as time and labor requirements. As adenosine triphosphate (ATP) is ubiquitous in all living organisms including microorganisms, this study aimed to directly compare the results of microbial assessment and ATP quantification, and to suggest possible detailed application methods of the ATP test for hygiene evaluation in pigpens of a farrowing unit. Before and after standard cleaning procedures, samples were collected from the floor corner, floor center, and feeding trough of four pigpens at different time points. No FIB were detected and both the TAB and ATP levels were significantly decreased in the floor center area after cleaning. FIB were continuously detected after cleaning and disinfection of the floor corners, and there was no significant ATP level reduction. The feeding trough did not show any significant difference in these values before and after cleaning, indicating insufficient cleaning of this area. The levels of TAB and ATP after cleaning were significantly correlated and the average ATP value was significantly lower in the absence of FIB than in their presence. In the absence of standard references, a more thorough hygiene management could be achieved evenly by supplementing cleaning or disinfection based on the lowest ATP results obtained at the cleanest test site, which in the present study was the floor center. Overall, these results indicate that the on-farm ATP test can be used to determine the cleanliness status, in addition to visual inspection, as an alternative to laboratory culture-based testing for the presence of microorganisms.

Shear strengthening of reinforced concrete beams with minimum CFRP and GFRP strips using different wrapping technics without anchoring application

  • Aksoylu, Ceyhun
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.845-865
    • /
    • 2022
  • In this study, the performance of shear deficient reinforced concrete (RC) beams with rectangular cross-sections, which were externally bonded reinforced (EBR) with high strength CFRP and GFRP strips composite along shear spans, has been experimentally and analytically investigated under vertical load. In the study, the minimum CFRP and GFRP strips width over spacing were considered. The shear beam with turned end to a bending beam was investigated by applying different composite strips. Therefore various arising in each of strength, ductility, rigidity, and energy dissipation capacity were obtained. A total of 12 small-scaled experimental programs have been performed. Beam dimensions have been taken as 100×150×1000 mm. Four beams have been tested as unstrengthened samples. This paper focuses on the effect of minimum CFRP and GFRP strip width on behaviours of RC beams shear-strengthened with full-wrapping, U-wrapping, and U-wrapping+longitudinal bonding strips. Strengthened beams showed significant increments for flexural ductility, energy dissipation, and inelastic performance. The full wrapping strips applied against shear failure have increased the load-carrying capacity of samples 53%-63% interval rate. Although full wrapping is the best strengthening choice, the U-wrapping and U-wrapping+longitudinal strips of both CFRP and GFRP bonding increased the shear capacity by 53%~75% compared to the S2 sample. In terms of ductility, the best result has been obtained by the type of strengthening where the S5 beam was completely GFRP wrapped. The experimental results were also compared with the analytically given by ACI440.2R-17, TBEC-2019 and FIB-2001. Especially in U-wrapped beams, the estimation of FIB was determined to be 81%. The estimates of the other codes are far from meeting the experimental results; therefore, essential improvements should be applied to the codes, especially regarding CFRP and GFRP deformation and approaches for longitudinal strip connections. According to the test results, it is suggested that GFRP, which is at least as effective but cheaper than CFRP, may be preferred for strengthening applications.

Surface Characteristics of Type II Anodized Ti-6Al-4V Alloy for Biomedical Applications

  • Lee, Su-Won;Jeong, Tae-Gon;Yang, Jae-Ung;Jeong, Jae-Yeong;Park, Gwang-Min;Jeong, Yong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.77-77
    • /
    • 2017
  • Titanium and its alloys offer attractive properties in a variety of applications. These are widely used for the field of biomedical implants because of its good biocompatibility and high corrosion resistance. Titanium anodizing is often used in the metal finishing of products, especially those can be used in the medical devices with dense oxide surface. Based on SAE/AMS (Society of Automotive Engineers/Aerospace Material Specification) 2488D, it has the specification for industrial titanium anodizing that have three different types of titanium anodization as following: Type I is used as a coating for elevated temperature forming; Type II is used as an anti-galling coating without additional lubrication or as a pre-treatment for improving adherence of film lubricants; Type III is used as a treatment to produce a spectrum of surface colours on titanium. In this study, we have focused on Type II anodization for the medical (dental and orthopedic) application, the anodized surface was modified with gray color under alkaline electrolyte. The surface characteristics were analyzed with Focused Ion Beam (FIB), Scanning Electron Microscopy (SEM), surface roughness, Vickers hardness, three point bending test, biocompatibility, and corrosion (potentiodynamic) test. The Ti-6Al-4V alloy was used for specimen, the anodizing procedure was conducted in alkaline solution (NaOH based, pH>13). Applied voltage was range between 20 V to 40 V until the ampere to be zero. As results, the surface characteristics of anodic oxide layer were analyzed with SEM, the dissecting layer was fabricated with FIB method prior to analyze surface. The surface roughness was measured by arithmetic mean deviation of the roughness profile (Ra). The Vickers hardness was obtained with Vickers hardness tester, indentation was repeated for 5 times on each sample, and the three point bending property was verified by yield load values. In order to determine the corrosion resistance for the corrosion rate, the potentiodynamic test was performed for each specimen. The biological safety assessment was analyzed by cytotoxic and pyrogen test. Through FIB feature of anodic surfaces, the thickness of oxide layer was 1.1 um. The surface roughness, Vickers hardness, bending yield, and corrosion resistance of the anodized specimen were shown higher value than those of non-treated specimen. Also we could verify that there was no significant issues from cytotoxicity and pyrogen test.

  • PDF

Metalorganic chemical vapor deposition of semiconducting ZnO thin films and nanostructures

  • Kim Sang-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.1
    • /
    • pp.12-19
    • /
    • 2006
  • Metalorganic chemical vapor deposition (MOCYD) techniques have been applied to fabricate semiconducting ZnO thin films and nanostructures, which are promising for novel optoelectronic device applications using their unique multifunctional properties. The growth and characterization of ZnO thin films on Si and $SiO_2$ substrates by MOCYD as fundamental study to realize ZnO nanostructures was carried out. The precise control of initial nucleation processes was found to be a key issue for realizing high quality epitaxial layers on the substrates. In addition, fabrication and characterization of ZnO nanodots with low-dimensional characteristics have been investigated to establish nanostructure blocks for ZnO-based nanoscale device application. Systematic realization of self- and artificially-controlled ZnO nanodots on $SiO_2/Si$ substrates was proposed and successfully demonstrated utilizing MOCYD in addition with a focused ion beam technique.

A Study on the Physical Properties of Concrete with Three-dimensional Fiber Application (입체 섬유 적용 콘크리트의 물리적 특성에 관한 연구)

  • Jae-Min Lee;Il-Young Jang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.519-525
    • /
    • 2024
  • In this paper, a study on the physical properties of mortar applying 3D Textile was conducted to compensate for the shortcomings of the existing concrete surface repair and reinforcement method. In the tests conducted to analyze the physical properties, compressive strength, flexural strength, and dynamic modulus measurement tests were conducted. As a result of the compressive strength test, as the number of surfaces to which the stereoscopic fiber was applied increased, the amount of displacement and strength reduction rate increased, and the flexural strength also increased as the number of surfaces to which the stereoscopic fiber was applied increased. In addition, it was confirmed that the use of stereoscopic fibers tended to decrease the dynamic modulus of elasticity. This result is a characteristic of the application of stereoscopic fibers, and it caused a decrease in compressive strength due to a decrease in the mortar content of the part to which the stereoscopic fib er was applied, and the high tensile force of the stereoscopic fiber is believed to have affected the increase in flexural strength.

Pressure sensing of air flow using multi-walled carbon nanotubes (다중벽 탄소 나노튜브를 이용한 유동 압력 검출)

  • Song, Jin-Won;Lee, Jong-Hong;Lee, Eung-Sug;Han, Chang-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.377-383
    • /
    • 2007
  • We describe the fabrication and characterization of a doubly clamped multi-walled carbon nanotube (MWNT). The device was assembled by an application of electric field in solution. The MWNT was clamped on end of metal trench electrodes in solution and deposited with additional platinum (Pt) on edge of electrode for firmly suspending the MWNT by focused ion beam (FIB). The MWNTs range of diameter and length were 100 to 150 nm and 1.5 to $2{\mu}m$, respectively. Electrical characteristics of fabricated devices were measured by I-V curve and impedance analysis. The mechanical deformation was observed by resistivity in high air pressure. Resonant frequency around 6.8 MHz was detected and resistivity was linearly varied according to the magnitude of air pressure. This device could have potential applications in nanoelectronics and various sensors.

A Study of Optimization of Electrodeposited CuSnZn Alloys Electrolyte and Process

  • Hur, Jin-Young;Lee, Ho-Nyun;Lee, Hong-Kee
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.2
    • /
    • pp.64-72
    • /
    • 2010
  • CuSnZn electroplating was investigated as alternative to Ni plating. Evaluation of electrolyte and plating process was performed to control physical characteristics of the film, and to collect practical data for application. Hull-cell test was conducted for basic comparison of two commercialized products and developed product. Based on hull-cell test results, long term test of three electrolytes was performed. Various analysis on long term tested electrolyte and samples have been done. Reliable and practical data was collected using FE-SEM (FEI, Sirion), EDX (ThermoNoran SIX-200E), ICP Spectrometer (GBC Scientifi c, Integra XL), FIB (FEI, Nova600) for anlysis. Physical analysis and reliability test of the long term tested film were also carried out. Through this investigation plating time, plating speed, electrolyte composition, electrolyte metal consumption, hardness and corrosion resistance has been compared. This set of data is used to predict and control the chemical composition of the film and modify the physical characteristics of the CuSnZn alloy.

Preparation of Talc-Silica Composites by Controlling Surface Charge Behavior (표면전하 거동 조절을 이용한 탈크-실리카 복합체의 제조)

  • Yun, Ki-Hoon;Park, Min-Gyeong;Moon, Young-Jin;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.116-124
    • /
    • 2017
  • A plate-type inorganic pigment complex was manufactured in a manner that treats the surface of the complex by adjusting zeta potential between talc, an inorganic pigment used as a material for color cosmetics, and hydrophobic silica. Talc, which is usually used in the prescription of color cosmetics, is a plate-type, white-colored inorganic substance with good application and spreadability to skin. Furthermore, it features excellent dispersibility and extensibility as well as outstanding heat tolerance, light stability, and chemical resistance. In general, silica contributes to durable makeup and stabilized formulation. This paper covers a process of manufacturing an inorganic pigment complex, where hydrophobic silica was applied to the surface of talc by using differences in zeta potential after the surface charges of talc and hydrophobic silica had been adjusted with cationic and anionic surfactants, respectively. The resulting inorganic pigment complex was composed of talc whose surface is coated hydrophobic silica to the thickness of $1{\mu}m$ or less, which developed an effective hydrophobic property. Zeta potential was measured to analyze the surface charge of an inorganic pigment, and FT-IR, used to check the functional group of a surfactant, was applied to treat the surface of the pigment. The surface of the inorganic pigment complex was observed employing SEM, EDS, and FIB, while its structure was confirmed with XRD and FT-IR.

Application in Conductive Filler by Low-Temperature Densification and Synthesis of Core-Shell Structure Powder for Prevention from Copper Oxidation (구리 산화 방지를 위한 Core-Shell 구조 입자 합성과 저온 치밀화를 통한 도전성 필러 응용)

  • Shim, Young Ho;Park, Seong-Dae;Kim, Hee Taik
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.554-560
    • /
    • 2012
  • Recently, it has been increasing trend to use conductive materials as electronics and communication technology in electronics industry are developing. The noble metal such as Ag, Pt, Pd etc. are mostly used as conductive materials, To reduce production cost, alternative materials with similar characteristics of noble metals are needed. Copper has advantages, i.e its electronic properties are similar to noble metals and low cost than noble metal, but its use has been restricted because of oxidation in air. In this study, the tin film was coated on copper by electroless plating to protect copper from oxidation and to confirm the effects of temperature, pH, amount of $SnCl_2$, and feeding speed in plating conditions. Additionally, we apply $Cu_{core}Sn_{shell}$ powder as conductive filler with low-temperature densification and analysis by SEM, XRD, FIB and 4-Point Probe techniques. As result of the study, tin film was coated well on copper and was protected from oxidation. After low-temperature densification treatment, the meted tin made chemical interconnections with copper. Accordingly, conductivity was increased than before condition. We hope $Cu_{core}Sn_{shell}$ powder to replace noble metals and use in the electronic field.

Contact Transfer Printing Using Bi-layer Functionalized Nanobio Interface for Flexible Plasmonic Sensing

  • Lee, Jihye;Park, Jiyun;Lee, Junyoung;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.413-413
    • /
    • 2014
  • In this paper, we present a fabrication method of functionalized gold nanostructures on flexible substrate that can be implemented for plasmonic sensing application. For biomolecular sensing, many researchers exploit unconventional lithography method like nanoimprint lithography (NIP), contact transfer lithography, soft lithography, colloidal transfer printing due to its usability and easy to functionalization. In particular, nanoimprint and contact transfer lithography need to have anti-adhesion layer for distinctive metallic properties on the flexible substrates. However, when metallic thin film was deposited on the anti-adhesion layer coated substrates, we discover much aggravation of the mold by repetitive use. Thus it would be impossible to get a high quality of metal nanostructure on the transferred substrate for developing flexible electronics based transfer printing. Here we demonstrate a method for nano-pillar mold and transfer the controllable nanoparticle array on the flexible substrates without an anti-adhesion layer. Also functionalization of gold was investigated by the different length of thiol applied for effectively localized surface plasmonic resonance sensing. First, a focused ion beam (FIB) and ICP-RIE are used to fabricate the nanoscale pillar array. Then gold metal layer is deposited onto the patterned nanostructure. The metallic 130 nm and 250 nm nanodisk pattern are transferred onto flexible polymer substrate by bi-layer functionalized contact imprinting which can be tunable surface energy interfaces. Different thiol reagents such as Thioglycolic acid (98%), 3-Mercaptopropionic acid (99%), 11-Mercaptoundecanoic acid (95%) and 16-Mercaptohexadecanoic acid (90%) are used. Overcoming the repeatedly usage of the anti-adhesion layer mold which has less uniformity and not washable interface, contact printing method using bi-layer gold array are not only expedient access to fabrication but also have distinctive properties including anti-adhesion layer free, functionalized bottom of the gold nano disk, repeatedly replicate the pattern on the flexible substrate. As a result we demonstrate the feasibility of flexible plasmonic sensing interface and anticipate that the method can be extended to variable application including the portable bio sensor via mass production of stable nanostructure array and other nanophotonic application.

  • PDF