• Title/Summary/Keyword: FEM (finite element method)

Search Result 3,154, Processing Time 0.034 seconds

Analysis of a PM Motor Drive System by a Coupled Method with MATLAB and FEM

  • Ishikawa T.;Sunaga T.;Nakamura S.;Mori D.;Hashimoto S.;Matsunami M.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.229-232
    • /
    • 2005
  • Finite element method (FEM) is a very powerful tool for the calculation of magnetic field of electromagnetic devices. MATLAB/Simulink is also well known as a very useful tool for control systems. This paper proposes a very promising method, where the FEM is coupled with MATLAB. We apply this method to analyze a permanent magnet (PM) motor drive system, and compare with results using MATLAB only.

Skew Analysis of Synchronous Reluctance Motor Using Equivalent Magnetic Circuit Method (등가자기회로법을 이용한 동기형 릴럭턴스 전동기의 스큐해석)

  • Ahn, Joon-Seon;Lim, Seung-Bin;Kim, Sol;Lim, Seong-Yeop;Kwon, Sam-Young;Lee, Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.3
    • /
    • pp.123-130
    • /
    • 2006
  • This paper presents characteristics analysis of skewed Synchronous Reluctance Motor using equivalent magnetic circuit and compares with the result of Finite Element Method. Torque ripple must be reduced, because it is producing noise and vibration. There is many kinds of method to reduce torque ripple, but generally we apply skewing stator or rotor. The 2D Finite Element Method(FEM) or 3D FEM is used to analyze the motor, since skew influence the average torque in the motor. However, the FEM takes much time in spite of the advanced computer and numerical technique. This paper will analyze characteristics of skewed synchronous reluctance motor using equivalent magnetic circuit.

Optimal Design of Direct-Driven Wind Generator Using Mesh Adaptive Direct Search(MADS) (MADS를 이용한 직접구동형 풍력발전기 최적설계)

  • Park, Ji-Seong;An, Young-Jun;Lee, Cheol-Gyun;Kim, Jong-Wook;Jung, Sang-Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.48-57
    • /
    • 2009
  • This paper presents optimal design of direct-driven PM wind generator using MADS (Mesh Adaptive Direct Search). Optimal design of the direct-driven PM Wind Generator, combined with MADS and FEM (Finite Element Method), has been performed to maximize the Annual Energy Production (AEP) over the whole wind speed characterized by the statistical model of the wind speed distribution. In particular, the newly applied MADS contributes to reducing the computation time when compared with Genetic Algorithm (GA) implemented with the parallel computing method.

Electrical Field Analysis of Impregnation Insulation Paper according to the BEM and FEM methods (경계요소법과 유한요소법에 의한 함침 절연지의 전계해석)

  • Park, Hyoung-Jun;Kim, Gyun-Sig;Shin, Jong-Yeol;Park, Hee-Doo;Lee, Chung-Ho;Lee, Su-Won;Hong, Jin-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1664-1666
    • /
    • 2004
  • This paper describes the use of Armaid papers and varnishes in electric motors. We compare with boundary element method(BEM) and finite element method(FEM) by calculated electric field strength. Several computer software package to perform such calculations based on electrostatic field and applicable DC are available.

  • PDF

Numerical Analysis of Waveguide T-Junction (T-접합 도파관의 수치적 해석)

  • Cheon, Changyul;Chung, Jin-Kyo
    • Journal of Industrial Technology
    • /
    • v.13
    • /
    • pp.25-31
    • /
    • 1993
  • This paper presents an analysis of microwave device component. An H-Plane waveguide component with arbitrary shape is analyzed using finite element method(FEM) cooperated with boundary element method(BEM). The finite element method(FEM) is applied to the junction region and the boundary element method(BEM) to the waveguide region. For the application of BEM in the waveguide structure, a ray representation of the waveguide Green's function is used. The proposed technique was applied to the analysis of the waveguide inductive junction to compare the numerical result with the result of the mode matching technique. The comparison showed good agreements between the two results. Transmitted powers were also computed in T-junction waveguides for the various shape of the junction area.

  • PDF

FINITE ELEMENT SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATION WITH MULTIPLE CONCAVE CORNERS

  • Kim, Seokchan;Woo, Gyungsoo
    • Honam Mathematical Journal
    • /
    • v.40 no.4
    • /
    • pp.785-794
    • /
    • 2018
  • In [8] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities. They consider the Poisson equations with homogeneous Dirichlet boundary condition with one corner singularity at the origin, and compute the finite element solution using standard FEM and use the extraction formula to compute the stress intensity factor, then pose a PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor, which converges with optimal speed. From the solution they could get an accurate solution just by adding the singular part. This approach uses the polar coordinate and the cut-off function to control the singularity and the boundary condition. In this paper we consider Poisson equations with multiple singular points, which involves different cut-off functions which might overlaps together and shows the way of cording in FreeFEM++ to control the singular functions and cut-off functions with numerical experiments.

Analysis of Arc Behavior as a Function of Twisting Angle Between Contacts in Spiral Type VI by Means of Arc Image, Arc Voltage and FEM (아크이미지, 아크전압과 유한요소해석을 통한 나선형 VI 전극 간의 비틀림 각도에 따른 아크거동분석)

  • Kim, Byoung-Chul;Park, Hong-Tae;Son, Jin-Woo;Lim, Kee-Joe
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.4
    • /
    • pp.333-341
    • /
    • 2009
  • In this paper arc behavior in spiral type vacuum interrupter(VI) was analyzed by means of arc images, arc voltages and finite element method(FEM). As a result of experiment, the difference of arc voltage was observed under different twisting angles. It was found that the reason of the difference was the difference of arc resistance from simultaneous analysis of arc images and arc voltages. and the difference of arc resistance was explained by Lorentz force calculation with FEM. And the results of calculation were sufficient to explain the experimental results.

Inductance Calculation and Speed-Power Characteristic of Interior Type Permanent Magnet Synchronous Motor by FEM (유한요소법을 이용한 매입형 영구자석 동기전동기의 인덕턴스 산정 및 속도-출력 특성)

  • Gang, Gyu-Hong;Hong, Jeong-Pyo;Kim, Gyu-Tak
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.8
    • /
    • pp.408-416
    • /
    • 1999
  • The characteristics of permanent magnet synchronous motor are defined by airgap flux and circuit parameters. Interior Permanent Magnet Synchronous Motor(IPMSM) has a nonlinear characteristics due to structural speciality of rotor, so it is difficult to analyze circuit parameters and field-weakening characteristics of IPMSM. This paper presents the calculation of circuit parameters by using Finite Element Method(FEM) taken into consideration of nonlinear characteristics. Using the circuit parameters by FEM, IPMSM is analyzed to field-weakening characteristics and is compared with the Equivalent Magnetic Circuit(EMC) in which lumped parameter is consideration.

  • PDF

Analysis of Vibration of a Simple Plate In a Medium-to-High Frequency Range With Power Flow Finite Element Method (파워흐름유한요소법에 의한 중고주파수 영역에서 단순 평판의 진동 해석)

  • Seo, Seong-Hoon;Hong, Suk-Yoon;Kil, Hyun-Gwon;Huh, Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.125-131
    • /
    • 2003
  • In this paper Power Flow Finite Element Method(PFFEM) has been implemented to analyze the vibration of a plate in mid and high frequency ranges. In order to solve the vibration energy governing equation in Power Flow Analysis(PFA), The Finite Element Method(FEM) was used as a numerical tool. It allowed one to predict the distribution of displacement and Intensity in the plate vibrating at mid and high frequencies. The results were compared with the analytical solutions and the approximate FEM solutions. The comparison showed that PFFEM can be an effective tool to analyze the structural vibration in mid and high frequency ranges.