• Title/Summary/Keyword: FEM(유한요소법)

Search Result 1,560, Processing Time 0.043 seconds

Two-Dimensional Magnetotelluric Interpretation by Finite-Element Method (유한요소법에 의한 MT 법의 2차원 해석)

  • Kim, Hee-Joon;Choi, Ji-Hyang;Han, Nu-Ree;Lee, Seong-Kon;Song, Yoon-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.85-92
    • /
    • 2008
  • Magnetotelluric (MT) methods are widely applied as an effective exploration technique to geothermal surveys. Two-dimensional (2-D) analysis is frequently used to investigate a complicated subsurface structure in a geothermal region. A 2-D finite-element method (FEM) is usually applied to the MT analysis, but we must pay attention to the accuracy of so-called auxiliary fields. Rodi (1976) proposed an algorithm of improving the accuracy of auxiliary fields, and named it as the MOM method. Because it introduces zeros into the diagonal elements of coefficient matrix of the FEM total equation, a pivoting procedure applied to the symmetrical band matrix makes the numerical solution far less efficient. The MOM method was devised mainly for the inversion analysis, in which partial derivatives of both electric and magnetic fields with respect to model parameters are required. In the case of forward modeling, however, we do not have to resort to the MOM method; there is no need of modifying the coefficient matrix, and the auxiliary fields can be elicited from the regular FEM solution. The computational efficiency of the MOM method, however, can be greatly improved through a sophisticated rearrangement of the total equation.

Study on Torque and Engaging time Analysis of Micro-Electromagnetic Clutch by Using FEM (FEM을 이용한 Micro-Electromagnetic Clutch 토크와 응답시간해석)

  • Park, Chang-Hao;Kim, Myoung-Gu;Lee, Heung-Shik;Cho, Chong-Du
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.1
    • /
    • pp.21-28
    • /
    • 2005
  • This study tries to analyzes the torque and engaging time generated in a micro-electromagnetic clutch by using FEM. For the purpose of design change and optimization of the micro-electromagnetic clutch, the torque prediction is very important. We employ a mathematical approach based on the electromagnetic principle. For torque prediction, real material properties are substituted to the constructed axi-symmetric FEM model to obtain the analytical torque and engaging time. The predicted torque and engaging time are compared with those obtained by experiments to discuss the validity of torque and engaging time analysis. The analytical results agrees well with experimental data, therefore explaining the validity of the torque and engaging time prediction method.

Comparison of Two Methods for Analyzing Stress-Strain Behavior of Soil Beam (지반보의 응력-변형률 거동에 대한 해석법 비교)

  • Lee, Seung-Hyun;Han, Jin-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.294-302
    • /
    • 2018
  • To analyze the behavior of a soil beam under pore water pressure, the results of analytical solutions and finite element analysis (FEM) were compared quantitatively. In contrast to the results of the analytical solution, the horizontal stress obtained from the FEM did not show a symmetrical distribution. On the other hand, the horizontal stress became closer to symmetrical distribution as the number of elements of the soil beam were increased. A comparison of the horizontal stresses from the analytic solution with those obtained from Gaussian points of FEM showed that the magnitude of the tensile stress from the FEM using 3 elements was 6% of the maximum value of the analytical solution and the compressive stress from the FEM using the same elements was 37% of the maximum value of the analytical solution. The magnitude of the tensile stress from the FEM using 6 elements was 61% of the maximum value of the analytical solution and the magnitude of the compressive stress from the FEM using the elements was 83% of the maximum value of the analytical solution. Vertical stresses, which were obtained from the analytical solution, showed a continuous distribution with the depth of the soil beam, whereas the vertical stresses from the FEM showed a discrete distribution corresponding to each element. The results also showed that the average value of the vertical stresses of each element was close to that of the pore water pressure. A comparison of the vertical displacements computed at the near vertical center line of the soil beam from the FEM with those of the analytical solution showed that the magnitude of the vertical displacement from FEM using 3 elements was 35% of the value of the analytical solution and the magnitude of the vertical displacement from FEM using 6 elements was 57% of the value of the analytical solution.

FEM Electrical Resistivity Modeling in Cylindrical Coordinates (원통 좌표계에서의 전기비저항 유한요소 모델링)

  • Choi Wonseok;Kim Jung-Ho;Park KwonGyu;Kim Hak-Soo;Suh Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.206-216
    • /
    • 2002
  • The finite element method (FEM), a powerful numerical modeling tool for solving various engineering problems, is frequently applied to three-dimensional (3-D) modeling thanks to its capability of discretizing and simulating the shape of model with finite number of elements. Considering the accuracy of the solution and computing time in modeling of engineering problems, it is preferable to construct physical continuity and simplify mesh system. Although there exist systematic mesh generation systems for arbitrary shaped model, it is hard to model a simple cylinder in terms of 3-D coordinate system especially in the vicinity of the central axis. In this study I adopt cylindrical coordinate system for modeling the 3-D model space and define the origin of the coordinates with mathematically clear coordinate transformation. Since we can simulate the whole space with hexahedral elements, the cylindrical coordinate system is effective in handling the 3-D model structure. The 3-D do resistivity modeling scheme developed in this study provides basie principle for borehole-to-surface resistivity survey, which can be a useful tool for the application to environmental problem.

Generalization of SS-PEM for Prediction of Signal Characteristics in Optical Fiber (광섬유 신호 특성 예측을 위한 일반화된 단계분할 유한요소법의 구현)

  • Lee, Bum-Woo;Jung, Baek-Ho;Lee, Ho-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2192-2194
    • /
    • 2000
  • 광섬유에서 전송되는 신호를 예측하기 위하여 일반화된 단계분할 유한요소법 (split-step finite element method, 55-FEM)을 이용한 비선헝 슈뢰딩거 방정식의 해석 방법을 구현하였다. 사용된 방정식은 분산 및 감쇄, 그리고 비선형 효과를 모두 고려하도록 하였다. SS-FEM으로 계산된 수치 결과는 엄밀해와 잘 일치하였음을 확인하였으며, 계산 시간을 푸리에법과도 비교하였다.

  • PDF

A Study on the Improvement of FEM model in Plate Vibration by Modification of Young's Modulus and Shape (FEM 모델의 형상과 감쇠계수의 추정을 통한 평판진동해석의 개선에 대한 연구)

  • Park, Sok-Chu;Oh, Chang-Guen
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.794-801
    • /
    • 2012
  • Finite Element Method is a strong tool to analyse static and dynamic problem of a structure. FEM is a good method for static problem, but for dynamic problem there are some differences between real phenomena and analyzed phenomena. Therefore some modifications are needed to identify two results. In this paper authors propose a genetic algorithm method 1) to adjust dimensions of plate for identifying natural frequencies, 2) to fit amplitude of FEM Frequency Response Function(FRF) onto it of real FRF. Analysis by raw FEM data gave questions if the results were for the same object. By only adjusting Young's modulus much better accordances were obtained, but limitation existed still. Very good agreements were achieved by shape modification and damping coefficient identification.

A Study on the Acceleration of the Solution Convergence for the Rigid Plastic FEM (강소성 유한요소해석에서 해의 수렴 가속화에 관한 연구)

  • 최영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.347-350
    • /
    • 2004
  • In this paper, the acceleration is studied for the rigid-plastic FEM of metal forming simulation. In the FEM, the direct iteration and Newton-Raphson iteration are applied to obtain the initial solution and accurate solution respectively. In general, the acceleration scheme for the direct iteration is not used. In this paper, an Aitken accelerator is applied to the direct iteration. In the modified Newton-Raphson iteration, the step length or the deceleration coefficient is used for the fast and robust convergence. The step length can be determined by using the accelerator. The numerical experiments have been performed for the comparisons. The faster convergence is obtained with the acceleration in the direct and Newton-Raphson iterations.

  • PDF

GUI 3D FEM Package in CEMTool Environment (CEMTool 환경에서 GUI 3차원 유한요소법 패키지)

  • Park, Jung-Hun;Han, Se-Kyung;Kwon, Wook-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2109-2110
    • /
    • 2006
  • 유한요소법은 전자기, 기계, 또는 다른 공학 분야에서 다루는 풀기 어려운 복잡한 문제들을 해석하는데 널리 사용되고 있는 수치해석기법이다. CEMTool은 MATLAB과 유사한 과학기술 범용 패키지로서, 간편한 명령어 방식의 문법과 블록 다이어그램 설계, 이공학 전반의 함수 등의 다양한 기능들을 제공한다. 본 논문에서는 범용 공학 소프트웨어인 CEMTool 환경에서 실행되는 GUI 3D FEM 패키지에 대해 기술한다. FEM 해석의 일반적 단계인 전처리, 솔버, 후처리 단계별로 나누어 각 단계의 구조와 특징 등을 기존의 CEMTool 2D FEM 패키지, MATLAB PDE Toolbox, FEMLAB2.2와 비교하여 자세히 살펴보기로 한다.

  • PDF

Pointwise Convergence for the FEM in Poisson Equations by a 1-Irregular Mesh (포아송 방정식에서 1-Irregular Mesh를 이용한 유한요소법의 수렴성에 관한 연구)

  • Lee, Hyoung;Ra, Sang-Dong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.11
    • /
    • pp.1194-1200
    • /
    • 1991
  • The FEM is a computer-aided mathematical technique for obtaining approximate solution to the differential equations. The pointwise convergence defines the relationship between the mesh size and the tolerance. This will play an important role in improving quality of finite element approximate solution. In the paper. We evaluate the convergence on a certain unknown point with a 1-irregular mesh refinement and spectral order enrichment. This means that the degree of freedom is minimized within a tolerance.

  • PDF