• Title/Summary/Keyword: FEA Simulation

Search Result 220, Processing Time 0.021 seconds

Torque Simulation for the 3-Degrees Of Freedom Permanent-Magnet Spherical Wheel Motor (3자유도 영구자석형 스피리컬 모터의 토크 시뮬레이션)

  • Kang, Dong-Woo;Won, Sung-Hong;Lee, Sung-Gu;Kim, Ki-Chan;Kim, Seung-Joo;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.138-140
    • /
    • 2007
  • These days, robot-industry development requires a new motor technology. Robot system is more complex than the other machine ones. They need the simplicity and light weight as robot systems. Moreover, They have to become a high energy efficiency machine. For these reasons, in this paper, the 3-degrees of freedom permanent-magnet spherical motor is proposed instead of existing ones. The proposed motor model is analyzed by using FEA(Finite Element Analysis), for comparing the results, torque of the motor is simulated by derived torque function.

  • PDF

Improvement of Assembling Efficiency for Moving Magnet Type Actuator in High Density Optical Disc (고밀도 광디스크용 가동자석형 구동기의 조립성능 개선)

  • Jeong, Ho-Seop;Yoon, Yong-Han;Kim, Do-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1255-1260
    • /
    • 2004
  • A moving-magnet type pickup actuator has an assembly error. That is, the actuating Part of an actuator is shifted from initial position after we assemble it into yoke. This Is the result of an effect of magnetic force between magnet and yoke. We performed magnetic-analysis using FEA. As a result of simulation, we improved the assembling efficiency for moving-magnet type actuator.

Analysis of Neural Network Approaches for Nonlinear Modeling of Switched Reluctance Motor Drive

  • Saravanan, P;Balaji, M;Balaji, Nagaraj K;Arumugam, R
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1548-1555
    • /
    • 2017
  • This paper attempts to employ and investigate neural based approaches as interpolation tools for modeling of Switched Reluctance Motor (SRM) drive. Precise modeling of SRM is essential to analyse the performance of control strategies for variable speed drive application. In this work the suitability of Generalized Regression Neural Network (GRNN) and Extreme Learning Machine (ELM) in addition to conventional neural network are explored for improving the modeling accuracy of SRM. The neural structures are trained with the data obtained by modeling of SRM using Finite Element Analysis (FEA) and the trained neural network is incorporated in the model of SRM drive. The results signify the modeling accuracy with GRNN model. The closed loop drive simulation is performed in MATLAB/Simulink environment and the closeness of the results in comparison with the experimental prototype validates the modeling approach.

Design optimization of spot welded structures to attain maximum strength

  • Ertas, Ahmet H.
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.995-1009
    • /
    • 2015
  • This study presents design optimization of spot welded structures to attain maximum strength by using the Nelder-Mead (Simplex) method. It is the main idea of the algorithm that the simulation run is executed several times to satisfy predefined convergence criteria and every run uses the starting points of the previous configurations. The material and size of the sheet plates are the pre-assigned parameters which do not change in the optimization cycle. Locations of the spot welds, on the other hand, are chosen to be design variables. In order to calculate the objective function, which is the maximum equivalent stress, ANSYS, general purpose finite element analysis software, is used. To obtain global optimum locations of spot welds a methodology is proposed by modifying the Nelder-Mead (Simplex) method. The procedure is applied to a number of representative problems to demonstrate the validity and effectiveness of the proposed method. It is shown that it is possible to obtain the global optimum values without stacking local minimum ones by using proposed methodology.

Calculating Inductance of Switched Reluctance Motors with overlapping soles of rotor and stator (SRM 고정자와 회전자 중첩에 따른 인덕턴스 계산)

  • Choi, Kyeong-Ho;Back, Won-Sik;Kim, Dong-Hee;Kim, Min-Huei
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.933-935
    • /
    • 2001
  • This paper presents a calculating method for inductance of the Switched Reluctance Motor(SRM) for torque characteristics and driving by analytical model. The approaches for calculating inductance have taken vary from detailed finite element analysis(FEA) and Fitting method in magnetization curves using complex nonlinear magnetic circuit models. But those methods have not satisfactory approach for machine performance calculations, because of having a long time and remodeling for analyses, therefore thus an alternative approach is required. So it is suggested simply calculating method of the inductance based on designed data of machinery by analytical model in unaligned and aligned rotor. In order to prove the calculating, there are compare with analytical FEM, direct measurement, this method, and simulation. The compared result is shown to obtain good accuracy.

  • PDF

PREDICTION OF MICROSTRUCTURE EVOLUTION AND HARDNESS DISTRIBUTION IN THE WELD REPAIR OF CARBON STEEL PIPELINE

  • Li, Victor;Kim, Dong
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.205-210
    • /
    • 2002
  • This article presents an integrated modeling approach for coupled analysis of heat transfer and microstructure evolution in welding carbon steel. The modeling procedure utilizes commercial [mite element code ABAQUS/Standard as the platform for solving the equation of heat conduction. User subroutines that implement computational thermodynamics and kinetics models are integrated with the FEA code to compute the transient microstructure evolution. In this study, the integrated models are applied to simulate the hot-tap repair welding of carbon steel pipeline. Microstructural components are treated as user output variables. Based on the predicted microstructure and cooling rates, hardness distributions in the welds were also predicted. The predicted microstructure and hardness distribution were found in good agreement with metallographic examinations and hardness measurements. This study demonstrates the applicability of computational models for the development of welding procedure for in-service pipeline repair.

  • PDF

A Theoretical and Experimental Study on the Plastic Flow in Porthole Extrusion (포트홀 압출의 소성유동에 대한 이론 및 실험적 연구)

  • 한철호;임헌조
    • Transactions of Materials Processing
    • /
    • v.10 no.6
    • /
    • pp.485-492
    • /
    • 2001
  • The paper is concerned with plastic flow in the port and welding chamber of rectangular hollow section extrusion through the porthole die. The extrusion process is analyzed by numerical simulation and experiments in the unsteady state. The effects of types of inlet with and without taper on the flow and extrusion load are mainly discussed and compared by FEA and experiments. Experiments are carried out by using the plasticine as a model material at room temperature. To visualize the plastic flow in the extrusion process, some split dies and punches are designed and manufactured by EDM. The theoretical predictions by FEM are reasonable agreements with experimental results on the deformed configurations and welding lines.

  • PDF

Temperature Distributions and Thermal Distortions of the Al-MMC Brake Drum (Al기 복합재료 브레이크 드럼의 열응력 해석)

  • 윤영식;남종승;유승을;한범석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.433-436
    • /
    • 2000
  • For a new design of a automotive brake system, it appears to be very important to examine the temperature and thermal stresses distribution in the brake drum. In the direct measurement of them, however, a number of difficulties are involved. In this study, simulation on temperature and thermal stress distributions in an A1-MMC brake drum of a commercial vehicle during 15 braking operations was carried out using the finite element analysis(FEA1. The effect of a circumferential fin near open end of the brake drum on the temperature rise and stresses was also examined.

  • PDF

Fabrication and characterization of fine pitch IR image sensor using a-Si (비정질 실리콘을 이용한 미세 피치 적외선 이미지 센서 제조 및 특성)

  • Kim, Kyoung-Min;Kim, Byeong-Il;Kim, Hee-Yeoun;Jang, Won-Soo;Kim, Tae-Hyun;Kang, Tai-Young
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.130-136
    • /
    • 2010
  • The microbolometer array sensor with fine pitch pixel array has been implemented to the released amorphous silicon layer supported by two contact pads. For the design of focal plane mirror with geometrical flatness, the simple beam test structures were fabricated and characterized. As the beam length decreased, the effect of beam width on the bending was minimized, Mirror deformation of focal plane in a real pixel showed downward curvature by residual stress of a-Si and Ti layer. The mirror tilting was caused by the mis-align effect of contact pad and confirmed by FEA simulation results. The properties of bolometer have been measured as such that the NETD 145 mK, the TCR -2 %/K, and thermal time constant 1.99 ms.

A novel miniature condenser microphone with a hinge diaphragm (힌지구조를 갖는 초소형 콘덴서 마이크로폰)

  • Kim, Hye-Jin;Lee, Sung-Q;Park, Kang-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.174-178
    • /
    • 2007
  • This paper presents a novel, highly sensitive condenser microphone with a flexure hinge diaphragm. We used the finite-element analysis (FEA) to evaluate the mechanical and acoustic performance of the condenser microphone with a hinge diaphragm. And we fabricated the miniature condenser microphones with area of 1.5 mm${\times}$1.5 mm. From the simulation results, we confirmed that the maximum displacements at the center of flexure hinge diaphragms are several hundred times, compared with flat diaphragms. The sensitivities of fabricated miniature microphones are about $12.87{\mu}V/Pa$ at 1 kHz under a low bias voltage of 1 V, and the frequency response is flat upto 13 kHz.