• Title/Summary/Keyword: FDS

Search Result 484, Processing Time 0.21 seconds

TURBULENT FLOW CHARACTERISTICS OF CHANNEL FLOW USING LARGE EDDY SIMULATION WITH WALL-FUNCTION(FDS CODE) (벽 함수가 적용된 대와류 모사(FDS 코드)의 채널에서의 난류 유동 특성)

  • Jang, Yong-Jun;Ryu, Ji-Min;Ko, Han Seo;Park, Sung-Huk;Koo, Dong-Hoe
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.94-103
    • /
    • 2015
  • The turbulent flow characteristics in the channel flow are investigated using large eddy simulation(LES) of FDS code, built in NIST(USA), in which the near-wall flow is solved by Werner-Wengle wall function. The periodic flow condition is applied in streamwise direction to get the fully developed turbulent flow and symmetric condition is applied in lateral direction. The height of the channel is H=1m, and the length of the channel is 6H, and the lateral length is H. The total grid is $32{\times}32{\times}32$ and $y^+$ is kept above 11 to fulfill the near-wall flow requirement. The Smagorinsky model is used to solve the sub-grid scale stress. Smagorinsky constant $C_s$ is 0.2(default in FDS). Three cases of Reynolds number(10,700, 26,000, 49,000.), based on the channel height, are analyzed. The simulated results are compared with direct numerical simulation(DNS) and particle image velocimetry(PIV) experimental data. The linear low-Re eddy viscosity model of Launder & Sharma and non-linear low-Re eddy viscosity model of Abe-Jang-Leschziner are utilized to compare the results with LES of FDS. Reynolds normal stresses, Reynolds shear stresses, turbulent kinetic energys and mean velocity flows are well compared with DNS and PIV data.

A Study on the Characteristics of FDS Heat Release Rate Predictions for Fire involving Solid Combustible Materials in a Closed Compartment (밀폐된 구획 내 복합소재 고체 가연물의 연소시 열방출률의 FDS 예측 특성)

  • Hong, Ter-Ki;Roh, Beom-Seok;Park, Seul-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.349-356
    • /
    • 2020
  • The heat release rate (HRR) and fire growth rate of fire for the solid combustibles consisting of multi-materials was measured through the ISO 9705 room corner test, and the computational analysis in a closed compartment was performed to simulate a fire using the heat release rate prediction model provided by a Fire Dynamics Simulator (FDS). The method of predicting the heat release rate provided by the FDS was divided into a simple model and a pyrolysis model. Each model was applied and computational analysis was performed under the same conditions. As the solid combustible consisting of multi-materials, a cinema chair composed mostly of PU foam, PP, and steel was selected. The simple model was over-predicted compared to the predicted heat release rate and fire growth rate using the pyrolysis model in a closed compartment.

Smoke Control According to the Ventilation Capacity in Subway Tunnel Fire: I. FDS Simulation (지하철 터널 화재시 환기시설의 용량에 따른 제연효과 I. FDS 시뮬레이션)

  • Park, Kyung-Jun;Lee, Ki-Jun;Hadi, Bettar El;Lee, Jai-Hyo;Shin, Dong-Il
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.3
    • /
    • pp.31-38
    • /
    • 2011
  • In this study, we investigate simulation studies to confirm the removal of smoke through ventilation when the subway car is on fire and stopped in an underground subway tunnel, by using Fire Dynamics Simulator (FDS) which is being upgraded by NIST. The structure of subway tunnel and train for simulation modeling are based actual data from Seoul metropolitan subway. The main purpose of this study is to assure the removal efficiency of the ventilation when changing the ventilation capacity between 2.0 m/s and 3.0 m/s. The results of the study shows that carbon monoxide (CO) and carbon dioxide ($CO_2$) are reduced by about 35% as the ventilation capacity is increased by 0.5 m/s. This study also performs the grid sensitivity verification of FDS for improved accuracy of the results. To find the effective size of the grid, three cases are simulated and the results are compared.

Real-time surface acoustic wave reader platform implementation in the frequency domain sampling method using a Cortex-A9 (Cortex-A9을 이용한 주파수 영역 샘플링 방식의 실시간 표면 탄성파 리더 플랫폼 구현)

  • Yoon, Sang-hun;kim, Young-kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.343-345
    • /
    • 2015
  • Currently, SAW Device has been used as a frequency filter using the property of passing only a desired frequency with a narrow bandwidth. However, the areas of activity in various fields since the permanent advantages can be widened by using a non-powered. These sensor tags using SAW Device has been done, but a lot of research, the development of the state still insufficient for Reader Platform. How to read the value of the ID Tag Using SAW Device has a time domain sampling (TDS) method and a frequency domain sampling (FDS) method. The purpose of the paper, we use the FDS method that requires high-speed processing with a relatively slow sampling rate does not require high-speed sampling. Reader Platform was the way to detect ID through PC as FDS way, but It is based on the Cortex-A9 processor and it works a low price, compact and real-time Reader Platform.

  • PDF

A Study on Fire Features of Double-Skin Facade Structure by Using Fire Simulation (FDS) (화재 시뮬레이션(FDS)을 이용한 이중외피 구조의 화재 특성에 관한 연구)

  • Gu, Seon-Hwan;Kim, Hyun-Ho;Song, Young-Joo
    • Fire Science and Engineering
    • /
    • v.28 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • This study aims to address the fire characteristics of Double-skin facade using the Fire Dynamics Simulator (FDS). To end this, Double-skin facade was classified into the four structures, that is Box, Shaft-box, Corridor, Multistory, through PyroSim program which was based on FDS, and further each structure of fire characteristics were analyzed numerically as well as comparatively in the current study. This study also examined smoke movement, smoke density, smoke detectors, and visibility in order to closely identify the each structure of fire characteristics. The results of the study discovered that the Box structure did not significantly affect smoke which was rising in the other rooms, except for the fire room whereas the Corridor structure had positive effects on Double-skin facade horizontally. In addition, the Shaft-box structure showed the fastest vertical movement by means of the shaft, on the other hand, rising smoke influenced the other rooms as well. The Multistory structure along with rising smoke had a great impact on the other divided rooms in a vertical way.

Estimation of FDS Prediction Performance on the Operation of Water-Mist (미세물분무 작동에 대한 FDS 예측 성능 평가)

  • Ko, Gwon Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4809-4814
    • /
    • 2014
  • The aim of the present study was to estimate the prediction performance of a FDS (Fire Dynamic Simulator) to simulate the fire behaviors and suppression characteristics by operating a water-mist. Rosin-Rammler/log-normal distribution function was used to determine the initial droplet distribution of water-mist and the effects of its model constant were considered. In addition, the simulation models were validated by a comparison of the predicted fire suppression characteristics with water-mist injection pressures to the previous experiments, and the thermal flow behaviors and gaseous concentration variations were analyzed. The results showed that water-mists with the same mean diameter were affected by the characteristics of the droplet size distribution, which have different size and velocity distributions at the downstream location. The fire simulations conducted in this study determine the initial droplet size distribution tuned to the base of the spray characteristics measured by previous experiments. The simulation results showed good agreement with the previous measurements for temperature variations and fire suppression characteristics. In addition, it was confirmed that the FDS simulation with a water-mist operation supplies useful details on estimations of the thermal flow fields and gaseous concentration under water mist operation conditions.

Evaluation of the Prediction Performance of Design Fire Curves for Solid Fuel Fire in a Building Space (건물 내 고체연료 화재에 대한 설계화재곡선 예측성능 평가)

  • Baek, Bitna;Oh, Chang Bo
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.47-55
    • /
    • 2019
  • The prediction performance of design fire curves was evaluated using a Fire dynamics simulator (FDS) for a solid fuel fire in a building space by comparing the results with experimental data. EDC 2-step mixing controlled combustion model was used in the FDS simulations and the previously suggested 2-stage design fire (TDF), Quadratic and Exponential design fire curves were used as the FDS inputs. The simulation results showed that smoke propagation in the building space was significantly affected by the design fire curves. The predictions of simulations using design fire curves for the experimental temperatures in the building space were reasonable, but the TDF was found to be the most acceptable for predicting temperature. The predictions with each design fire curve of species concentrations showed insufficient agreement with the experiments. This suggests that the combustion model used in this study was not optimized for the simulation of a solid fuel fire, and additional studies will be needed to examine the combustion model on the FDS prediction of solid fires.

A Study on the Prediction Method of Voice Phishing Damage Using Big Data and FDS (빅데이터와 FDS를 활용한 보이스피싱 피해 예측 방법 연구)

  • Lee, Seoungyong;Lee, Julak
    • Korean Security Journal
    • /
    • no.62
    • /
    • pp.185-203
    • /
    • 2020
  • While overall crime has been on the decline since 2009, voice phishing has rather been on the rise. The government and academia have presented various measures and conducted research to eradicate it, but it is not enough to catch up with evolving voice phishing. In the study, researchers focused on catching criminals and preventing damage from voice phishing, which is difficult to recover from. In particular, a voice phishing prediction method using the Fraud Detection System (FDS), which is being used to detect financial fraud, was studied based on the fact that the victim engaged in financial transaction activities (such as account transfers). As a result, it was conceptually derived to combine big data such as call details, messenger details, abnormal accounts, voice phishing type and 112 report related to voice phishing in machine learning-based Fraud Detection System(FDS). In this study, the research focused mainly on government measures and literature research on the use of big data. However, limitations in data collection and security concerns in FDS have not provided a specific model. However, it is meaningful that the concept of voice phishing responses that converge FDS with the types of data needed for machine learning was presented for the first time in the absence of prior research. Based on this research, it is hoped that 'Voice Phishing Damage Prediction System' will be developed to prevent damage from voice phishing.

Performance Evaluation of FDS for Predicting the Unsteady Fire Characteristics in a Semi-Closed ISO 9705 Room (반밀폐된 ISO 9705 화재실에서 비정상 화재특성 예측을 위한 FDS의 성능평가)

  • Mun, Sun-Yeo;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.21-28
    • /
    • 2012
  • The objective of this study is to evaluate the prediction accuracy of FDS(Fire Dynamic Simulator) for the thermal and chemical characteristics of under-ventilated fire with unsteady fire growth in a semi-closed compartment. To this end, a standard doorway width of the full-scale ISO 9705 room was modified to 0.1 m and the flow rate of heptane fuel was increased linearly with time (until maximum 2.0 MW based on ideal heat release rate) using a spray nozzle located at the center of enclosure. To verify the capability of FDS, the predicted results were compared with a previous experimental data under the identical fire conditions. It was observed that with an appropriate grid system, the numerically predicted temperature and heat flux inside the compartment showed reasonable agreement with the experimental data. On the other hand, there were considerable limitations to predict accurately the unsteady behaviors of CO and $CO_2$ concentration under the condition of continuous fire growth. These results leaded to a discrepancy between the present evaluation of FDS and the previous evaluation conducted for steady-state under-ventilated fires. It was important to note that the prediction of transient CO production characteristics using FDS was approached carefully for the under-ventilated fire in a semi-closed compartment.

Evaluation of Modified Design Fire Curves for Liquid Pool Fires Using the FDS and CFAST (FDS와 CFAST를 이용한 액체 풀화재의 수정된 디자인 화재곡선 평가 연구)

  • Baek, Bitna;Oh, Chang Bo;Lee, Chi Young
    • Fire Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.7-16
    • /
    • 2018
  • In this study, the previous design fire curve for fire simulation was modified and re-suggested. Numerical simulations with the FDS and CFAST were performed for the n-heptane and n-octane pool fires in the ISO 9705 compartment to evaluate the prediction performances of the previous 1-stage and modified 2-stage design fire curves. The numerical results were compared with the experimental temperature and concentrations of $O_2$ and $CO_2$. The FDS and CFAST simulations with the 2-stage design fire curve showed better prediction performance for the variation of temperature and major species concentration than the simulations with 1-stage design fire curve. Especially, the simulations with the 2-stage design fire curve agreed with the experimental temperature more reasonably than the results with the 1-stage design fire curve. The FDS and CFAST simulations showed good prediction performance for the temperature in the upper layer of compartment and the results with the FDS and CFAST were similar to each other. However, the FDS and CFAST showed poor and different prediction performance for the temperature in the lower layer of compartment.