DOI QR코드

DOI QR Code

A Study on the Characteristics of FDS Heat Release Rate Predictions for Fire involving Solid Combustible Materials in a Closed Compartment

밀폐된 구획 내 복합소재 고체 가연물의 연소시 열방출률의 FDS 예측 특성

  • Hong, Ter-Ki (Department of Mechanical System & Automotive Engineering, Graduate School of Chosun University) ;
  • Roh, Beom-Seok (Education & Operation Team, Korea Institute of Maritime and Fisheries Technology) ;
  • Park, Seul-Hyun (School of Mechanical System & Automotive Engineering, Chosun University)
  • 홍터기 (조선대학교 대학원 기계시스템.미래자동차공학과) ;
  • 노범석 (한국해양수산연구원) ;
  • 박설현 (조선대학교 기계공학과)
  • Received : 2020.09.21
  • Accepted : 2020.11.06
  • Published : 2020.11.30

Abstract

The heat release rate (HRR) and fire growth rate of fire for the solid combustibles consisting of multi-materials was measured through the ISO 9705 room corner test, and the computational analysis in a closed compartment was performed to simulate a fire using the heat release rate prediction model provided by a Fire Dynamics Simulator (FDS). The method of predicting the heat release rate provided by the FDS was divided into a simple model and a pyrolysis model. Each model was applied and computational analysis was performed under the same conditions. As the solid combustible consisting of multi-materials, a cinema chair composed mostly of PU foam, PP, and steel was selected. The simple model was over-predicted compared to the predicted heat release rate and fire growth rate using the pyrolysis model in a closed compartment.

ISO 9705 룸코너 시험을 통해 복합소재 고체 가연물의 화재발생시 발생되는 열방출률을 측정하고 화재성장율을 계산하여 Fire Dynamics Simulator (FDS)에서 제공하는 열방출률 예측 모델을 사용자가 시험을 통해 얻어진 질량 소모율을 직접 입력하고 점화원에 의해 가연물의 표면 온도가 점화 온도에 도달하게 되면 정해진 연료를 소모하게 됨으로써 열방출률이 계산되는 단순 모델 (Simple model)과 질량 소모율을 직접 계산하는 방식으로 고체 가연물의 온도를 계산하고 고체 가연물의 열분해율을 조절하여 직접 열방출률을 계산하는 열분해 모델 (Pyrolysis model)로 구분하고 각각의 열방출률 모델에 필요한 입력 인자를 적용하여 동일한 조건에서 밀폐된 구획 환경에 따라 FDS 전산 해석을 수행하였다. 복합소재 고체 가연물로는 PU 폼과 PP, 철재로 대부분 구성되어있는 영화관 의자를 선정하였다. 동일한 조건에서 밀폐된 구획 환경에 따라 각각의 열방출률 예측 모델을 해석한 결과, 밀폐된 구획에서 단순 모델을 통해 예측된 열방출률과 화재성장율이 열분해 모델을 이용하는 경우에 비해 다소 과예측되는 것을 확인 할 수 있었다.

Keywords

References

  1. 2013 Statistical Yearbook of Fire and Disaster Management, National Emergency Management Agency, Publication No. 11-1660000-000717-14.
  2. W. Jahn, G. Rein and J. Torero, "The Effect of Model Parameters on the Simulation on Fire Dynamics", Fire Safety Science-Proceedings of the Ninth International Symposium, pp. 1341-1352, 2008. DOI: https://doi.org/10.3801/IAFSS.FSS.9-1341
  3. K. H. Jang, "Proposals on the Input Data Standardization Needs of Fire and Evacuation Simulation in Performance Based Design", Fire Science and Engineering, Vol. 30, No. 5, pp. 18-25, 2016. DOI: https://doi.org/10.7731/KIFSE.2016.30.5.018
  4. H. Y. Jang, C. H. Hwang, C. B. Oh and D. G. Nam, "Evaluation of Design Fire Curves for Single Combustibles in a Cinema Complex", Fire Science and Engineering, Vol. 34, No. 3, pp. 18-27, 2020. DOI: https://doi.org/10.7731/KIFSE.191778b8
  5. T. K. Hong, "A Study of Thermal Pyrolysis and Burning Characteristics of Non-charring Solid Combustible with a Cone Calorimeter", Master's Thesis, Chosun University, Gwangju, Korea, pp. 7-8, 2008.
  6. K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk and K. Overholt, "Fire Dynamics Simulator, Technical Reference Guide, Volume 1: Mathematical Model", NIST SP 1018-1, NIST, Gaithersburg, MD 2015. DOI : http://dx.doi.org/10.6028/NIST.SP.1018
  7. T. K. Hong, D. P. Seo and S. H. Park, "Experimental Study on the Effect of Flow around Solid Combustibles and Thermal Thickness on Heat Release Rate Characteristics", Fire Science and Engineering, Vol. 34, No. 3, pp. 28-34, 2020. DOI: https://doi.org/10.7731/KIFSE.c4fb1b16
  8. ISO/TC 92, "Reaction to Fire Tests - Room Corner Test for Wall and Ceiling Lining Products - Part 1: Test Method for a Small Room Configuration", ISO 9705-1:2016(en), 2016.
  9. NFPA 921, "Fire and Explosion Investigation Guide", National Fire Protection Association.
  10. D. G. Nam, T. K. Hong, M. H. Ryu and S. H. Park, "Characteristics of Heat Release Rate Predictions of Fire by a Fire Dynamics Simulator for Solid Combustible Materials", Fire Science and Engineering, Vol. 34, No. 4, pp. 22-28, 2020. DOI: https://doi.org/10.7731/KIFSE.7c07b15d
  11. C. Huggett, "Estimation of the Rate of Heat Release Rate by Means of Oxygen Consumption", Journal of Fire and Flammability, Vol. 12, pp. 61-65, 1980. DOI: https://doi.org/10.1002/fam.810040202
  12. K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk and K. Overholt, "Fire Dynamics Simulator User's Guide", NIST SP 1019, Sixth Edition., NIST, Gaithersburg, MD, 2015. DOI: http://dx.doi.org/10.6028/NIST.SP.1019
  13. Fire Technology Solution DB, Available From: http://www.kfiredb.com (accessed Sept. 14, 2020)
  14. Society of Fire Protection Engineers, "SFPE Handbook of Fire Protection Engineering", 3rd Edition, National Fire Protection Association, Quincy, MA, pp. 3-347, 2010.
  15. NFPA 92B, NFPA72, National fire Alarm Code, Second Revision, NFPA, Quincy, MA