Let Rn be the space of rational functions with prescribed poles. If r ∈ Rn, does not vanish in |z| < k, then for k = 1 $${\mid}r^{\prime}(z){\mid}{\leq}{\frac{{\mid}B^{\prime}(z){\mid}}{2}}\sup_{z{\in}T}{\mid}r(z){\mid}$$, where B(z) is the Blaschke product. In this paper, we consider a more general class of rational functions rof ∈ Rm*n, defined by (rof)(z) = r(f(z)), where f(z) is a polynomial of degree m* and prove a more general result of the above inequality for k > 1. We also prove that $$\sup_{z{\in}T}\left[\left|{\frac{r^{*\prime}(f(z)}{B^{\prime}(z)}}\right|+\left|{\frac{r^{\prime}(f(z))}{B^{\prime}(z)}}\right|\right]=\sup_{z{\in}T}\left|{\frac{(rof)(z)}{f^{\prime}(z)}}\right|$$, and as a consequence of this result, we present a generalization of a theorem of O'Hara and Rodriguez for self-inverse polynomials. Finally, we establish a similar result when supremum is replaced by infimum for a rational function which has all its zeros in the unit circle.
The purpose of this study was to know the differences in perceptual judgement for speech intelligibility in monosyllables by inexperienced listeners and vowel space area according to different dysarthric severity. Three dysarthric speakers with different severity(mild, moderate and severe) screened by 3 clinicians' screening tests before the experiment were conducted. Corner vowels (i, u, ae, a) in monosyllable level (CVC, 'p_p') and carrier phrases ('종이에_써') were chosen and analyzed for vowel space. Inexperience listeners (n=20) performed the intelligibility test for spoken syllables and carrier phrases by dysarthric speakers. The results show that there is a significant differences in both F1 and F2 values among 4 corner vowels. Vowel space area in the data of mildly impaired speakers was significantly higher than two others. In the scores of speech intelligibility judged by inexperienced listeners, the scores by a moderately impaired speaker were more higher than two other speakers. The discrepancy between perceptual judgement by inexperienced listeners and vowel space area will be discussed in this area.
Let C[0, t] denote the space of real-valued continuous functions on [0, t] and define a random vector $Z_n:C[0,t]{\rightarrow}\mathbb{R}^n$ by $Z_n(x)=(\int_{0}^{t_1}h(s)dx(s),{\ldots},\int_{0}^{t_n}h(s)dx(s))$, where 0 < $t_1$ < ${\cdots}$ < $ t_n=t$ is a partition of [0, t] and $h{\in}L_2[0,t]$ with $h{\neq}0$ a.e. Using a simple formula for a conditional expectation on C[0, t] with $Z_n$, we evaluate a generalized analytic conditional Wiener integral of the function $G_r(x)=F(x){\Psi}(\int_{0}^{t}v_1(s)dx(s),{\ldots},\int_{0}^{t}v_r(s)dx(s))$ for F in a Banach algebra and for ${\Psi}=f+{\phi}$ which need not be bounded or continuous, where $f{\in}L_p(\mathbb{R}^r)(1{\leq}p{\leq}{\infty})$, {$v_1,{\ldots},v_r$} is an orthonormal subset of $L_2[0,t]$ and ${\phi}$ is the Fourier transform of a measure of bounded variation over $\mathbb{R}^r$. Finally we establish various change of scale transformations for the generalized analytic conditional Wiener integrals of $G_r$ with the conditioning function $Z_n$.
A novel energetic compound, bifurazano[3,4-b:3',4'-f]furoxano[3'',4''-d] oxacyclohetpatriene (BFFO), was synthesized through special etherification and its structure was determined by single crystal X-ray diffraction. The crystal of $BFFO{\cdot}H_2O$ is monoclinic, space group P2(1)/c with crystal parameters of a = $9.324(4){\AA}$, b = $9.727(4){\AA}$, c = $10.391(4){\AA}$, ${\beta}=106.305(6)^{\circ}$, V = $904.5(6){\AA}^3$, Z = 4, ${\mu}=0.17mm^{-1}$, F(000) = 512 and $D_c=1.866g\;cm^{-3}$. Spectroscopic properties and thermal behaviors of BFFO were studied. BFFO presents good detonation properties.
근관형성을 위해 표준화된 근관형성기구에 비해 taper가 큰 기구들이 사용되고 있으며 이를 이용하여 형성된 근관은 taper가 큰 근관의 모양을 갖는다. 근관충전방법에 있어 근관의 크기에 적합한 1차적 gutta-percha cone을 선택할 필요가 있다. 본 연구에서는 .04 및 .06 taper의 전동화일로 형성된 근관에 열연화충전법을 위해 가장 적합한 1차 cone을 선택하기 위한 지침 마련의 목적으로, 근단공의 크기와 근관의 taper에 따른 gutta-percha cone의 근단부 근관 내 적 합도를 평가하였다. ProFile$^{(R)}$ .04 taper와 .06 taper를 이용하여 Crown down 방법으로 60개의 모형근관을 형성하였다. 표준화 gutta-percha cone, Dia-Pro ISO-.04$^{TM}$ 및 .06 gutta-percha cone, MF, F, FM 및 M 크기의 비표준화 gutta-percha cone의 근관 내 적합도는 치근단 5mm의 근관면적에 대한 gutta-percha cone의 점유 면적비(%)로 하였다. .04 taper, 25번 크기의 근관에서는 F, MF 크기의 비표준화 cone이 표준화 cone과 Dia-Pro 180-.04$^{TM}$ 보다 우수한 근관적합도를 나타내었고(p<0.05), 30번 크기의 근관에서는 F, Dia-Pro ISO-.04$^{TM}$, FM 크기의 gutta-percha cone 모두 표준화 cone보다 우수한 근관적합도를 나타내었으나(p<0.05), 35번 크기의 근관에서는 모든 gutta-percha cone 사이에 유의한 차이를 나타내지 않았다(p>0.05) .06 taper, 25번 크기의 근관에서는 사용된 비표준화 cone 모두가 표준화 cone, Dia-Pro ISO-.06$^{TM}$ 보다 나은 근관적합도를 나타내었고(P<0.05), 30번 크기의 근관에서는 표준화 cone을 제외한 나머지 gutta-percha cone에서 유의한 차이를 발견할 수 없었다. 35번 크기의 근관에는 M 크기의 비표준화 cone이 가장 우수한 근관적합도를 보이고 있는 것으로 나타났으며, FM과 Dia-Pro ISO-.06$^{TM}$ 사이에서는 유의한 차이가 나타나지 않았다(p>0.05).
Let E be a uniformly convex Banach space and K a nonempty closed convex subset which is also a nonexpansive retract of E. For i = 1, 2, 3, let $T_i:K{\rightarrow}E$ be an asymptotically nonexpansive mappings with sequence ${\{k_n^{(i)}\}\subset[1,{\infty})$ such that $\sum_{n-1}^{\infty}(k_n^{(i)}-1)$ < ${\infty},\;k_{n}^{(i)}{\rightarrow}1$, as $n{\rightarrow}\infty$ and F(T)=$\bigcap_{i=3}^3F(T_i){\neq}{\phi}$ (the set of all common xed points of $T_i$, i = 1, 2, 3). Let {$a_n$},{$b_n$} and {$c_n$} are three real sequences in [0, 1] such that $\in{\leq}\;a_n,\;b_n,\;c_n\;{\leq}\;1-\in$ for $n{\in}N$ and some ${\in}{\geq}0$. Starting with arbitrary $x_1{\in}K$, define sequence {$x_n$} by setting {$$x_{n+1}=P((1-a_n)x_n+a_nT_1(PT_1)^{n-1}y_n)$$$$y_n=P((1-b_n)x_n+a_nT_2(PT_2)^{n-1}z_n)$$$$z_n=P((1-c_n)x_n+c_nT_3(PT_3)^{n-1}x_n)$$. Assume that one of the following conditions holds: (1) E satises the Opial property, (2) E has Frechet dierentiable norm, (3) $E^*$ has Kedec -Klee property, where $E^*$ is dual of E. Then sequence {$x_n$} converges weakly to some p${\in}$F(T).
The purpose of this study is to clarify the relationship between the exhibits layout and the spatial organization in exhibition spaces. As an analytical method, the space syntax theory devised by Bill Hillier(1984) was applied for analysing the potential differentiation of exhibition spaces and remodeling method in Seoul City Museum selected for case study. The results are as following. Especially from the convex analysis, axial analysis and exhibits(interpretation); 1) the closed spatial system(1F) has high visibility and high intelligibility in hall area but lacks route continuity, 2) the circulated spatial system(2F) has low global visibility but offers high intelligibility and connectivity due to its coercive circulation, 3) and the organization of exhibition design consists in differentiating space that reintegrates them into another spatial order. Therefore, there process are expected to provide a methodological framework for analysing and interpreting spatial organizations of design, leading to the clear explanation of remodeling.
6877 children who visited to pedodontic department from 1976 to 1979, were surveyed on the state of dental caries, therapic inclination a year and yearly tendency of treatment. The results were as follows ; 1. The prevalence of dental caries tended to show the increase in general year by year. 2. Girls had higher d.e.f. T. & S. index and D.M.F. T. & S. index than boys generally. 3. Distribution of therapy a year. (1979) Amalgam Filling 4464 Pulpotomy 952 S.P.-Crown 1538 Gold Inlay 250 Space Maintainer 341 Extraction 1313 Orthodontic Appliance 206 4. Tendency of treatment in 1979 (compared with 1976) No. of new patients 87.5% increased Amalgam Filling 50.0% increased Extraction 31.4% increased Orthodontic Appliance 267.9% increased S.P.-Crown 225.8% increased Gold Inlay 27.8% decreased Space Maintainer 2.3% decreased Pulpotomy 20.5% decreased.
Given operators X and Y acting on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. An interpolating operator for n-operators satisfies the equation $AX_i=Y_i$, for i = 1,2,...,n. In this article, we showed the following: Let L, be a subspace lattice on a Hilbert space H and let X and Y be operators in B(H). Then the following are equivalent: (1) $$sup\{\frac{{\parallel}E^{\bot}Yf{\parallel}}{{\overline}{\parallel}E^{\bot}Xf{\parallel}}\;:\;f{\epsilon}H,\;E{\epsilon}L}\}\;<\;{\infty},\;sup\{\frac{{\parallel}Xf{\parallel}}{{\overline}{\parallel}Yf{\parallel}}\;:\;f{\epsilon}H\}\;<\;{\infty}$$ and $\bar{range\;X}=H=\bar{range\;Y}$. (2) There exists an invertible operator A in AlgL such that AX=Y.
본 논문에서는 S.Bostas와 V.Kumar[7]에 의하여 제안되고 $GF(2^n)$에서 정의되는 부호계열 발생알고리즘을 분석하고, 길이 n인 이진벡터로 이루어지는 벡터공간 $F_2$으로부터, 두 원소로 정의되는 공간 $F_2$로 사상할 수 있는 부울함수를 이용하여 발생기 구성 함수를 도출하였다. 차수 n=5와 n=7인 두 종류의 최소 다항식을 이용한 피드벡 쉬프트레지스터를 기반으로 Trace 함수로부터 부호계열 발생기 구성 부울함수를 도출하고 발생기를 설계 구성하였으며 이를 이용하여 두 종류의 부호계열 군을 발생하였다. 발생된 부호계열의 주기는 각각 31과 127로서 주기 $L=2^n-1$을 만족하고 ${\tau}=0$을 제외한 자기상관함수 값과 상호상관함수 값이 각각 {-9, -1, 7}과 {-17, -1, 15}로서 상관함수 값 $R_{i,j}({\tau})=\{-2^{(n+1)/2}-1,-1,2^{(n+1)/2}-1\}$의 특성을 만족하였다. 이 결과로부터 부울함수를 이용한 부호계열 발생기 설계와 구성이 타당함을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.