• Title/Summary/Keyword: Extrusion hole

Search Result 33, Processing Time 0.02 seconds

Pelletizing Performance of Food Waste Compost by An Extrusion Process (음식물퇴비의 압출에 의한 펠렛화 특성)

  • Kim, Tae-Kye;Min, Young-Bong;Moon, Sung-Dong;Kim, Myung-Cheol
    • Journal of Biosystems Engineering
    • /
    • v.35 no.5
    • /
    • pp.336-342
    • /
    • 2010
  • This study was performed to develop extrusion pelletizer for pelletizing the compost waste food. The effect of water content on the shape of pellet, the relationship between diameter of pellet and of extrusion hole and the relationship between extrusion force and die angle were investigated. Considering the stable shape of compost pellet and the operation efficiency of pelletizer, the water content of 2~4% was considered as the best condition. And the compost pellet could not maintain it's shape at the water content of 10% or over. The strongest extrusion force was needs when the die angle had $90^{\circ}C$ in 6 mm extrusion hole diameter, on the other hand, the weakest extrusion force was need at the die angle of $45^{\circ}{\sim}65^{\circ}$. The compression strength of pellet shows the highest strength of 9.2Mpa when we make the compost pellet after screening the compost and make it with a size of 1.18 mm(No.16) or less.

A Study on the Hot Metal Extrusion Bending Process for the Rectangular Curved Tube (사각단면 금속곡관 제품의 열간압출 굽힘가공에 관한 연구)

  • Park D. Y.;Youn S. H.;Jin I. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.212-215
    • /
    • 2001
  • The bending process for the rectangular curved tube can be developed by the hot metal extrusion machine with the multiple punches moving in the different velocity. The bending phenomenon can be controlled by the two variables, the one of them is the difference of velocity at the die exit section by the different velocity of billets through the multi-hole container. The other is the difference by the different hole diameter. The results of the experiment show that the rectangular curved tube can be formed by the extrusion process and that the curvature of the curved product can be controlled by the velocity of punch and the diameter of container hole and that the defects such as the distortion of section and the thickness change of the wall of tube and the folding and wrinkling of thin tube did not happen after the bending processing by the extrusion bending machine.

  • PDF

A Study on Extru-Bending Process Extrusion Bending Machine (열간금속 압출굽힘기를 이용한 금속곡관의 압출굽힘가공에 관한 연구)

  • 박대윤;진인태
    • Transactions of Materials Processing
    • /
    • v.11 no.3
    • /
    • pp.262-268
    • /
    • 2002
  • The bending process for the rectangular and circular curled tube can be developed by the hot metal extrusion machine with the multiple punches moving in the different velocity. The bending phenomenon has been known to be occurred by the different of velocity at the die exit. The difference of velocity at the die exit section can be obtained by the different velocity of billets through the multi-hole container and by the cohesion of billet Inside the porthole die chamber. The bending phenomenon can be controlled by the two variables, the one of them is the difference of velocity at the die edit section by the different velocity of billets through the multi-hole container The other is the difference by the different hole diameter The results of the experiment show that the rectangular curved tube can be formed by the extrusion process, that the curvature of the curved product can be controlled by the velocity of punch and the diameter of container hole, that the defects such as the distortion of section and the thickness change of the wall of tube and the folding and wrinkling of thin tube did not happen after the extra-bending processing by the extrusion bending machine.

A Study on the Bending Process for the Circular Curved Tube and Rectangular Curved Tube with Fins (핀이 부착된 금속곡관 제품의 열간압출 굽힘가공에 관한 연구)

  • Kim M. G.;Park J. W.;Jin I. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.204-207
    • /
    • 2001
  • The bending process for the circular curved tube and rectangular curved tube with fins can be developed by the hot metal extrusion machine with the multiple punches moving in the different velocity. The bending phenomenon can be controlled by the two variables. The one of them is the difference of velocity at the die exit section by the different velocity of billets through the multi-hole container. The other is the one by the different hole diameter. The results of the experiment show that the circular curved tube with fins and rectangular curved tube with pins can be formed by the extrusion process and that the curveture of the product can be controlled by the velocity of punch and diameter of container hole and that the defects such as the distortion of section and the thickness change of the wall of tube the folding and wrinkling of thin tube and fins did not happen after the bending processing by the extrusion bending machine.

  • PDF

A Study of Hot Metal Extru-Bending Process

  • Jin In-Tai
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.11a
    • /
    • pp.63-70
    • /
    • 2002
  • The purpose of the present study is to propose a new way of manufacturing curved metal tubes with arbitrary sections and way of eliminating the conventional bending defects such as thinning and thickening, in the wall of tube, distortion of the section, and wrinkling and folding on the surface by the extrusion bending process that can extrude and weld together one or more billets inside dies cavity, and can bend them during extrusion due to the gradient of extrusion velocities controlled by the eccentricity of the cavity sections between the entrance and the exit of the eccentric conical extrusion bending dies and conical plug, or by the relative size of the holes of multi-hole container, or by the relative moving velocity of multi-punches.

  • PDF

Extrusion Process Analysis for Al Condenser Tube with Multi Hole (다공 Al 컨덴서 튜브의 압출공정 해석)

  • Bae J. H;Lee J. M;Kim B. M
    • Transactions of Materials Processing
    • /
    • v.13 no.8
    • /
    • pp.723-730
    • /
    • 2004
  • This paper describes the analysis of extrusion process and integrity for a condenser tube which is a component of the heat exchanger in automobile and all conditioning apparatus. Recently, according to the development of analysis method using the computer, the numerical simulation have been applied to the 3-dimensional hot extrusion process with complex section area of the non-steady statement and then results of the analysis have been applied to optimal die design and process design. In this paper, firstly, the die design was performed for a condenser tube with a multi-hole section and the rigid-plasticity FE analysis performed of extrusion process. Secondly, we estimated metal flow of billet, extrusion load, welding pressure in chamber etc. and evaluated the pressure and elastic strain of the die land and mandrel tooth profile through a stress analysis of the die. Finally, the extrusion test was performed to estimate the validity of FE analysis. This paper confirmed that the designed extrusion die of the research is satisfactorily designed fur integrity of condenser tube.

A Study on the Bending Process for the Curved Tube by Hot Metal Extrusion Machine with the Multiple Punches Moving in the Different Velocity (다지형 압출펀치의 상대이동 속도 차이에 의한 금속 곡관의 열간금속 압출굽힘가공에 관한 연구)

  • Park D. Y.;Jin I. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.102-105
    • /
    • 2001
  • The bending process for the curved tube can be developed by the hot metal extrusion machine with the multiple punches moving in the different velocity. The bending phenomenon has been studied to be occurred by the different of velocity at the die extrusion. The difference of velocity at the die exit section can be obtained by the different velocity of billets through the multi-hole container and by the welding of billets inside the porthole die chamber. The multiple billets are moving differently by the multiple extrusion punches controlled by PLC with the servo mechanism units. The results of the experiments show that the curved tube can be bended by the extrusion process and that the defects such as the distortion of section and the thickness change of thick tube, tile folding and wrinkling of thin tube can not be shown after the bending processing by the extrusion bending machine.

  • PDF

Design and Analysis of Hollow Section Extrusion using Mismatching Refinement with Domain Decomposition (영역분할에 의한 불일치 격자세분화 기법을 이용한 중공형 압출공정의 설계 및 해석)

  • Park, Geun;Yang, Dong-Yeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.1016-1023
    • /
    • 2000
  • The present work is concerned with three-dimensional finite element analysis of the hollow section extrusion process using a porthole die. The effects of related design parameters are discussed through the finite element simulation for extrusion of a triply-connected rectangular tubular section. For economic computation, mismatching refinement, an efficient domain decomposition method with different mesh density for each subdomain, is implemented. In order to obtain the uniform flow at the outlet, design parameters such as the hole size and the hole position are investigated and compared through the numerical analysis. Comparing the velocity distribution with that of the original design, it is concluded that the design modification enables more uniform flow characteristics. The analysis results are then successfully reflected on the industrial porthole die design.

A Study on the Extru-Bending Process of the Product with "ㄱ" Section ("ㄱ" 단면 형상 제품의 압출굽힘 가공에 관한 연구)

  • 이경국;진인태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.371-374
    • /
    • 2003
  • The bending process for the "ㄱ" section product can be developed by the hot metal extrusion machine with the two punches moving in the different velocity. The bending phenomenon can be controlled by difference of velocity at the die exit section by the different velocity of billets through the two-hole container. The results of the experiment show that "ㄱ" section product can be bended by the extrusion process and that the curvature of the product can be controlled by the velocity of punch and that the defects such as the distortion of section and the thickness change of the product and the folding and wrinkling of the product did not happen after the bending processing by the extrusion bending machine.

  • PDF

Extrusion process Analysis and Evaluation of Mechanical property for Micro Multi Cell Tube with 4 hole (4 홀 Micro Multi Cell Tube 의 압출공정 해석 및 기계적 특성 평가)

  • 이정민;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.397-400
    • /
    • 2004
  • The direct extrusion with porthole die can produce condenser tube which has the competitive power in costs and qualities compared with the existing conform extrusion. In general, porthole die extrusion has a great advantage in the forming that produces the hollow sections difficult to produce by conventional extrusion with a mandrel on the stem. Especially, condenser tube manufactured by porthole die belongs to sophisticated part and demands tighter dimension tolerance and higher surface finish than any other part. In order to confirm the general of porthole die extrusion, we perform the 3D FE analysis of hot porthole extrusion in non-steady state by using DEFORM 3D and investigate a pattern of elastic deformation for porthole die through the stress analysis using ANSYS 5.5 during extrusion process.

  • PDF