• 제목/요약/키워드: Extrusion Temperature

검색결과 474건 처리시간 0.024초

Simulations of fiber spinning and film blowing based on a molecular/continuum model for flow-induced crystallization

  • McHugh, Anthony J.;Doufas, A.K.
    • Korea-Australia Rheology Journal
    • /
    • 제13권1호
    • /
    • pp.1-12
    • /
    • 2001
  • This paper describes the application of our recently developed two-phase model for flow-induced crystallization (FIC) to the simulation of fiber spinning and film blowing. 1-D and 2-D simulations of fiber spinning include the combined effects of (FIC), viscoelasticity, filament cooling, air drag, inertia, surface tension and gravity and the process dynamics are modeled from the spinneret to the take-up roll device (below the freeze point). 1-D model fits and predictions are in very good quantitative agreement with high- and low-speed spinline data for both nylon and PET systems. Necking and the associated extensional softening are also predicted. Consistent with experimental observations, the 2-D model also predicts a skin-core structure at low and intermediate spin speeds, with the stress, chain extension and crystallinity being highest at the surface. Film blowing is simulated using a "quasi-cylindrical" approximation for the momentum equations, and simulations include the combined effects of flow-induced crystallization, viscoelasticity, and bubble cooling. The effects of inflation pressure, melt extrusion temperature and take-up ratio on the bubble shape are predicted to be in agreement with experimental observations, and the location of the frost line is predicted naturally as a consequence of flow-induced crystallization. An important feature of our FIC model is the ability to predict stresses at the freeze point in fiber spinning and the frost line in film blowing, both of which are related to the physical and mechanical properties of the final product.l product.

  • PDF

An artificial diet for the swallowtail butterfly, Papilio xuthus

  • Kim, Seonghyun;Hong, Seongjin;Park, Haechul;Lee, Youngbo;Park, Kwanho;Choi, Wonho;Kim, Namjung
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제28권1호
    • /
    • pp.1-4
    • /
    • 2014
  • The effect of an artificial diet on developmental rate, a life history parameter, was examined for the swallowtail butterfly Papilio xuthus. Artificial insect diets are an essential component of many insect rearing systems that produce insects for research purposes. Complex agar-gelled diets are generally prepared in large batches and used shortly after preparation because the degradation of perishable diet ingredients, such as vitamins and fatty acids, can adversely affect insect quality (Brewer 1984). However, the timing of diet preparation may be inconvenient, and large batches wasteful, if the unused excess is discarded. The percentage of pupation varied considerably, with no significant differences among diets, on which a maximum pupation percentage of 83% was observed. Pellet-type diets were investigated with the aim of developing a more easily prepared diet. The extrusion of the artificial diet under high temperature and pressure may induce desirable chemical and physical changes in the extruded product. The purpose of the present study was to develop an artificial diet for rearing P. xuthus.

강소성 유한요소법에서의 다결정 모델의 구현 (Implementation of Polycrystal Model in Rigid Plastic Finite Element Method)

  • 강경필;이경훈;김용환;신광선
    • 소성∙가공
    • /
    • 제26권5호
    • /
    • pp.286-292
    • /
    • 2017
  • Magnesium alloy shows strong anisotropy and asymmetric behavior in tension and compression curve, especially at room temperature. These characteristics limit the application of finite element method (FEM) which is based on conventional continuum mechanics. To accurately predict the material behavior of magnesium alloy at microstructural level, a methodology of fully coupled multiscale simulation is presented and a crystal plasticity model as a constitutive equation in the simulation of metal forming process is introduced in this study. The existing constitutive equation for rigid plastic FEM is modified to accommodate deviatoric stress component and its derivatives with respect to strain rate components. Viscoplastic self-consistent (VPSC) polycrystal model was selected as a constitutive model because it was regarded as the most robust model compared to Taylor model or Sachs model. Stiffness matrix and load vector were derived based on the new approach and implemented into $DEFORM^{TM}-3D$ via a user subroutine handling stiffness matrix at an elemental level. The application to extrusion and rolling process of pure magnesium is presented in this study to assess the validity of the proposed multiscale process.

Extensional and Complex Viscosities of Linear and Branched Polycarbonate Blends

  • Park, Jung-Hoon;Hyun, Jae-Chun;Kim, Woo-Nyon;Kim, Sung-Ryong;Ryu, Seung-Chan
    • Macromolecular Research
    • /
    • 제10권3호
    • /
    • pp.135-139
    • /
    • 2002
  • Blends of the linear bisphenol-A polycarbonate (L-PC) and randomly branched bisphenol-A polycarbonate (Br-PC), prepared by co-rotating twin screw extrusion, were investigated using differential scanning calorimetry (DSC), sag resistance time tester, extensional rheometry, and advanced rheometric expansion system (ARES). From the DSC results, the glass transition temperature (T$_{g}$) of the L-PC/Br-PC blend was increased with the increase of Br-PC in the blend, and the blend showed a single T$_{g}$, which suggests a miscible blend. The sag resistance time of the L-PC/Br-PC blend was increased with the increase of Br-PC in the blends. From the results of rheological measurements of the L-PC/Br-PC blends, the extensional viscosity and the complex viscosity of the blends were found to increase with the increase of Br-PC in the blends. The increase of extensional viscosity and complex viscosity was related with the increase of sag resistance time with the Br-PC in the L-PC/Br-PC blends.nds.

마그네슘합금의 초소성 특성과 응용 (Superplasticity of Magnesium Alloys and SPF Applications)

  • 심재동;변지영
    • 한국재료학회지
    • /
    • 제27권1호
    • /
    • pp.53-61
    • /
    • 2017
  • Magnesium alloys are of emerging interest in the automotive, aerospace and electronic industries due to their light weight, high specific strength, damping capacity, etc. However, practical applications are limited because magnesium alloys have poor formability at room temperature due to the lack of slip systems and the formation of basal texture, both of which characteristics are attributed to the hcp crystal structure. Fortunately, many magnesium alloys, even commercialized AZ or ZK series alloys, exhibit superplastic behavior and show very large tensile ductility, which means that these materials have potential application to superplastic forming (SPF) of magnesium alloy sheets. The SPF technique offers many advantages such as near net shaping, design flexibility, simple process and low die cost. Superplasticity occurs in materials having very small grain sizes of less than $10{\mu}m$ and these small grains in magnesium alloys can be achieved by thermomechanical treatment in conventional rolling or extrusion processes. Moreover, some coarse-grained magnesium alloys are reported to have superplasticity when grain refinement occurs through recrystallization during deformation in the initial stage. This report reviews the characteristics of superplastic magnesium alloys with high-strain rate and coarse grains. Finally, some examples of SPF application are suggested.

AZ80 마그네슘 합금 압출재의 압축 성형조건에 따른 방위특성 분석 (Texture Evolution of Extruded AZ80 Mg Alloy under Various Compressive Forming Conditions)

  • 윤종헌;이상익;이정환;박성혁;조재형
    • 소성∙가공
    • /
    • 제21권4호
    • /
    • pp.240-245
    • /
    • 2012
  • With the increasing demand for light-weight materials to reduce fuel consumption, the automobile industry has extensively studied magnesium alloys which are light weight metals. The intrinsic poor formability and poor ductility at ambient temperature due to the hexagonal close-packed (HCP) crystal structure and the associated insufficient number of independent slip systems restricts the practical usage of these alloys. Hot working of magnesium alloys using a forging or extrusion enables net-shape manufacturing with enhanced formability and ductility since there are several operative non-basal slip systems in addition to basal slip plane, which increases the workability. In this research, the thermomechanical properties of AZ80 Mg alloy were obtained by compression testing at the various temperatures and strain rates. Optical microscopy and EBSD were used to study the microstructural behavior such as misorientation distribution and dynamic recrystallization. The results were correlated to the hardening and the softening of the alloy. The experimental data in conjunction with a physical explanation provide the optimal conditions for net-shape forging under hot or warm temperatures through control of the grain refinement and the working conditions.

듀플렉스 알루미늄 합금의 내식성 분석 (Corrosion analysis of the duplex aluminum alloys)

  • 최인규;김시명;김상호
    • 한국표면공학회지
    • /
    • 제48권5호
    • /
    • pp.227-232
    • /
    • 2015
  • Corrosion characteristic of the duplex Al-Mg-Si alloys with low, commercial and high solute contents were studied using an anodic polarization test in 1M NaCl solution at room temperature. Polarization range condition of the experiment were form .0.3V to .1.3V with a 0.2 mV scanning speed. The exchange current density means corrosion rate of the low solute alloy was low as about $16.29{\mu}A/cm^2$, and that of the high solute alloy was high as $84.92{\mu}A/cm^2$. The difference was mainly attributed to the inter-granular precipitates $Mg_2Si$ and Si which could make a galvanic corrosion on the aluminum base. The amount of precipitates was greater in high solute alloy at mainly in grain boundary. While, the extruded alloys had better corrosion resistance than the cast alloy because the silicon precipitates become coarse during the extrusion process.

Effect of Coffee Grounds on Mechanical Behavior of Poly Propylene Composites

  • Vinitsa Chanthavong;M. N. Prabhakar;Dong-Woo Lee;Jung-Il Song
    • Composites Research
    • /
    • 제36권4호
    • /
    • pp.264-269
    • /
    • 2023
  • Spent coffee grounds (SCG) are a ubiquitous byproduct of coffee consumption, representing a significant waste management challenge, as well as an untapped resource for economic development and sustainability. Improper disposal of SCG can result in environmental problems such as methane emissions and leachate production. This study aims to investigate the physicochemical properties of SCG and their potential as a reinforcement material in polypropylene (PP) to fabricate an eco-friendly composite via extrusion and injection molding, with SCG filler ratios ranging from 5-20%. To evaluate the effect of SCG on the morphological and mechanical properties of the bio- composite, thermogravimetric analysis, SEM, tensile, flexural, and impact tests were conducted. The results demonstrated that the addition of SCG lead to a slight increase in brittleness of the composite but did not significantly affect its mechanical properties. Impressively, the presence of a significant organic component in SCG contributed to the enhanced thermal performance of PP/SCG composites. This improvement was evident in terms of increased thermal stability, delayed onset of degradation, and higher maximum degradation temperature as compared to pure PP. These findings suggest that SCG has potential as a filler material for PP composites, with the ability to enhance the material's properties without compromising overall performance.

리튬이온 배터리 방전 시 발열 특성 및 냉각 실험과 유한요소 해석 (Thermal Characteristics and Cooling Experiments and Analysis of Finite Elements in the Discharge of Lithium-Ion Batteries)

  • 김석일;강신유
    • 산업기술연구
    • /
    • 제43권1호
    • /
    • pp.15-23
    • /
    • 2023
  • Lithium-ion batteries are predominantly employed in electric vehicles and energy storage devices, offering the advantage of high energy density. However, they are susceptible to efficiency degradation when operated at high temperatures due to their sensitivity to the external environment. In this study, we conducted experiments using an indirect cooling method to prevent thermal runaway and explosions in lithium-ion batteries. The results were validated by comparing them with heat transfer simulations conducted through a commercial finite element analysis program. The experiments included single-cell exothermic tests and cooling experiments on a battery pack with 10 cells connected in series, utilizing 21700 lithium-ion batteries. To block external temperature influences, the experimental environment featured an extrusion method insulation in the environmental chamber. The cooling system, suitable for indirect cooling, was constructed with copper tubes and pins. The heat transfer analysis began by presenting a single-cell heating model using commercial software, which was then employed to analyze the heating and cooling of the battery pack.

열연화주입형 gutta percha와 resilon의 유변학적 특성 (Rheological characterization of thermoplasticized injectable gutta percha and resilon)

  • 장주혜;백승호;이인복
    • Restorative Dentistry and Endodontics
    • /
    • 제36권5호
    • /
    • pp.377-384
    • /
    • 2011
  • 연구목적: 본 연구의 목적은 열연화주입형 gutta percha와 resilon의 온도 변화에 따른 점탄성 변화를 관찰하고 조작성을 비교하기 위함이다. 연구 재료 및 방법: Obtura-II 시스템을 이용하여 세 종류의 gutta percha와 resilon을 $140^{\circ}C$$200^{\circ}C$로 가열한 후 사출 온도를 측정하였다. 점도계를 이용하여 온도 변화에 따른 재료들의 점탄성 특성(전단탄성계수, G'; 전단점성계수, G"; 손실 탄젠트, tan${\delta}$; 복소점도, ${\eta}^*$)을 관찰하였다. 점도계와 차동주사열측정기(DSC)로 재료들의 상전이 온도를 측정하였고 가압법으로 $60^{\circ}C$$40^{\circ}C$에서 재료들의 점조도를 비교하였다. 결과: 세 종의 gutta perchas는 온도에 따라 서로 다른 점탄성 특성을 나타냈다. $40-50^{\circ}C$에서 연화된 재료의 고체화 상변이가 일어났고, 점도계와 DSC로 측정된 상변이 시작 온도는 유사하였다. 상변이 시작 온도와 가압 시 점조도는 재료들마다 차이를 보였다(p < 0.05). Resilon은 gutta percha와 비슷한 유변학적 특성을 보였다. 결론: 열연화된 근관충전재는 냉각과정 동안 유변학적 특성의 변화를 나타냈고 재료들마다 서로 다른 점탄성 특성은 근관 내주입 시와 충전 시 서로 다른 조작성을 보임을 알 수 있다.