• Title/Summary/Keyword: Extrusion Temperature

Search Result 474, Processing Time 0.033 seconds

Effect of the Energy of Extrusion on the Starch Gelatinization (압출성형 에너지가 녹말의 호화에 미치는 영향)

  • Chung, Moon-Young;Lee, Seung-Ju
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.72-76
    • /
    • 1997
  • The effect of the energy supplied in extrusion on the starch gelatinization was analyzed. The energy needed for extrusion is generated by motor and heater. The motor energy is transformed into a thermal energy by heat dissipation and a mechanical energy, and the heater energy is of a thermal energy. At the low barrel temperature $({\leq}80^{\circ}C)$, it was found out there are two kinds of thermal energy by heat dissipation: one by a powder friction of corn grit with low moisture contents and the other by a viscous dissipation of corn grit with high moisture contents. The dissipated thermal energy by the powder friction was more effective on the starch gelatinization than that by the viscous dissipation. The effect of the mechanical energy was also analyzed in terms of a relative mechanical energy. The gelatinization of corn grit with high moisture contents $({\geq}33%)$ largely depended on the change in the relative mechanical energy, whereas that with low moisture contents $({\leq}30%)$ hardly depended on it.

  • PDF

Saccharification and Ethanol Production from Chlorella sp. Through High Speed Extrusion Pretreatment (고속 압출 전처리 공정을 이용한 Chlorella sp. 당화 및 바이오에탄올 생산)

  • Lee, Choon-Geun;Choi, Woon-Yong;Seo, Yong-Chang;Song, Chi-Ho;Ahn, Ju-Hee;Jung, Kyung-Hwan;Lee, Sang-Eun;Kang, Do-Hyung;Lee, Hyeon-Yong
    • KSBB Journal
    • /
    • v.27 no.3
    • /
    • pp.137-144
    • /
    • 2012
  • Among various pretreatment processes for bioethanol production, extrusion pretreatment, one of cheap and simple process was investigated to efficiently produce fermentable sugars from micro alga, Chlorella sp. The biomass was pretreated in a single screw extruder at five different barrel temperatures of 45, 50, 55, 60 and $65^{\circ}C$, respectively with five screw rotation speed of 10, 50, 100, 150 and 200 rpm. The pretreated biomass was reacted with two different hydrolyzing enzymes of cellulase and amyloglucosidase since the biomass contained different types of carbohydrates, compared to cellulose of agricultural by-products such wheat and corn stovers, etc. In general, higher glucose conversion yield was obtained as 13.24 (%, w/w) at $55^{\circ}C$ of barrel temperature and 100 rpm of screw speed conditions. In treating 5 FPU/glucan of cellulase and 150 Unit/mL of amyloglucosidase, ca. 64% of cellulose and 40% of polysaccharides in the micro alga were converted into glucose, which was higher yields than those from other reported data without applying an extrusion process. 84% of the fermentable sugars obtained from the hyrolyzing processes were fermented into ethanol in considering 50% of theoretical maximum fermentation yield of the yeast. These results implied that high speed extrusion could be suitable as a pretreatment process for the production of bioethanol from Chlorella sp.

Characteristics of Water Soluble Fractions of Wheat Bran Treated with Various Thermal Processes (열처리 밀기울의 수용성 분획의 특징)

  • Hwang, Jae-Kwan;Kim, Chong-Tai;Cho, Sung-Ja;Kim, Chul-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.934-938
    • /
    • 1995
  • Water soluble fractions (WSF) of wheat bran treated with thermal processes such as autoclaving, microwaving and extrusion were characterized to investigate the structural response of plant cell wall to thermal and mechanical energy. From the chemical analysis and gel filtration chromatography of WSF, gelatinization of starch was found to be the primary solubilizing mechanism of wheat bran, followed by the structural disintegration of fibrous non-starch cell wall materials. It was also found that extrusion process resulted in degrading relatively higher molecular weight non-starch polysaccharides from the cell wall. GC analysis of water soluble non-starch polysaccharides indicates that the arabinoxylan residues of cell wall are the most susceptible site to thermal treatments studied. In particular, the degrading degree of cell wall of wheat bran is the most significant for extrusion accompanying both high temperature and high shear.

  • PDF

Development and Use of a Low-Cost Extruder for the Rice-Oil Stabilization (미강안정화(米糠安定化)를 위한 저렴 Extruder의 개발 및 이용)

  • Cheigh, Hong-Sik;Kim, Chul-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.37-40
    • /
    • 1984
  • A simple and low cost autogenous-type extruder with a capacity of about 400kg/hr for rice bran-oil stabilization was developed. Specific energy consumption of the extruder was 0.060-0.070 KWH/kg of rice bran during extrusion. Rice bran was easily extruded to form flakes or pellets with an increase of bulk density. And also the desired extrusion temperature of $95^{\circ}C{\;}to{\;}150^{\circ}C$ could be easily obtained without any water addition when the rice bran was properly parametered with feed rate. The moisture content of bran was reduced and peroxidase was significantly inactivated after extrusion. The rice bran stabilized by the extrusion process was excellent in storage stability without considerable increase in free fatty acids.

  • PDF

Quality Characteristics of Extruded Formulated Products Prepared from Blends of Rice Flour, Corn Flour and Fish Muscle by Single-Screw Extrusion (쌀가루와 옥수수가루의 비율을 달리하여 제조한 생선스낵의 품질특성)

  • Sim, Young-Ja;Jung, Bok-Mi;Rhee, Khee-Choon
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.45-49
    • /
    • 2001
  • This research was conducted to study the characteristics of the extruded products prepared from blends containing fixed amounts of frozen pollack (20%) and defatted soy flour (5%) and varying amounts of rice and corn flour using laboratory-scale single-screw extruder. Extrusion conditions were set at 27% feed moisture, $160^{\circ}C$ process temperature and 170 rpm screw speed. Results showed that there was almost no difference in proximate compositions among all extruded products. The product made from 100% rice flour had the highest expansion ratio, the lowest bulk density and the lowest shear force (P<0.05). Also, this product was the highest in L value and had the highest preference in sensory evaluation. Consequently, the addition of frozen pollack and defatted soy flour to rice flour could make desirable expanded extruded products. This study will form the basis for future development of rice snacks containing frozen pollack.

  • PDF

Starch Liquefaction and Residence Time Distribution in Twin-Screw Extrusion of ${\alpha}$-Starch (호화전분의 쌍축형 압출성형에서 전분액화 및 체류시간 분포)

  • Kim, Sung-Uk;Lee, Seung-Ju
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.369-373
    • /
    • 2009
  • ${\alpha}$-Waxy corn starch was used as a feed for twin-screw extrusion in order to enhance starch liquefaction with added thermostable ${\alpha}$-amylase (derived from Bacillus licheniformis). The residence time distribution and starch liquefaction were investigated. The starch liquefaction was analyzed in terms of reducing sugar contents, molecular size from gel permeation chromatography (GPC), and microstructure from scanning electron microscopy (SEM). The use of ${\alpha}$-starch contributed to the production of more reducing sugar than the use of raw starch use alone. From GPC, the effect of ${\alpha}$- starch on the molecular size reduction was shown to be small. From SEM, irregular and damaged surface were observed on the extrudate from ${\alpha}$-starch, as compared to those from raw starch. The spread of residence time distribution curves was greater with feed of ${\alpha}$-starch than raw starch, indicating that ${\alpha}$-starch was hard to flow forward during extrusion. This could be improved by increasing the feed moisture content and barrel temperature of extruder.

Preparation of n-type Bi-Te-Se-based Thermoelectric Materials with Improved Reliability via hot Extrusion Process (열간압출을 이용한 고신뢰성 n형 Bi-Te-Se계 열전소자 제조)

  • Hwang, Jeong Yun;Kim, Yong-Nam;Lee, Kyu Hyoung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.2
    • /
    • pp.45-49
    • /
    • 2019
  • Herein we developed the hot extrusion technology to prepare n-type Bi-Te-Se-based thermoelectric materials with high reliability. Starting ingot was fabricated via melt-solidification process, then pulverized it into powders (${\sim}30{\mu}m$) by using high energy ball milling. By optimization of mold design and temperature-pressure conditions for hot extrusion, dense extrudate of 1.8 mm in diameter with high 00l orientation could be obtained from disc-shape compacted powders (20 mm in diameter). High power factor ${\sim}4.1mW/mK^2$ and enhanced mechanical strength ~50 MPa were simultaneously observed at 300 K.

Optimization of extrusion cooking conditions for seasoning base production from sea mustard (Undaria pinnatifida)

  • Lee, Chaehyeon;Shin, Eui-Cheol;Ahn, Soo-Young;Kim, Seonghui;Kwak, Dongyun;Kwon, Sangoh;Choi, Yunjin;Choi, Gibeom;Jeong, Hyangyeon;Kim, Jin-Soo;Lee, Jung Suck;Cho, Suengmok
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.3
    • /
    • pp.175-186
    • /
    • 2022
  • Sea mustard (Undaria pinnatifida), an important edible seaweed belonging to the brown algal family of Alariaceae, contains copious physiologically active substances. It has long been popular in Korea as a food and is frequently consumed in the form of soup. It is also commercially available as a home meal replacement. In this study, we developed a seasoning key base with a high degree of sensory preference from sea mustard using the extrusion cooking process. Extrusion cooking conditions were optimized through response surface methodology. Barrel temperature (X1, 140℃-160℃) and screw speed (X2, 158-315 rpm) were set as independent variables, and overall preference was determined as the dependent variable (Y, points). An optimal condition was obtained at X1 = 148.5℃ and X2 = 315 rpm, and the dependent variable (Y, overall acceptance) was 7.95 points, similar to the experimental value of 7.81. Umami taste had a relationship with the overall acceptance of sea mustard seasoning. In the electronic nose and tongue, increased sourness and umami intensities were associated with the highest sensory score. The samples were separated well by each characteristic via principal component analysis. Collectively, our study provides imperative preliminary data for the development of various seasonings using sea mustard.

High Strain Rate Superplasticity of Whisker Reinforced Aluminum Alloy Matrix Composites Fabricated by Squeeze Casting (용탕단조법에 의한 휘스커강화 Al합금기 복합재료의 고속초소성)

  • Lim, Suk-Won;Nishida, Yoshinori
    • Journal of Korea Foundry Society
    • /
    • v.21 no.6
    • /
    • pp.359-365
    • /
    • 2001
  • The superplastic behavior of whisker reinforced aluminum alloy matrix composites fabricated by squeeze casting as one of high pressure routes was investigated. The preforms of ${\alpha}-Si_3N_4$ and ${\beta}-SiC$ whiskers without any binder as a reinforcement were used. The matrix materials were 2024 and 7075 aluminum alloys. For the purpose of optimum superplastic condition, respectively, the whiskers volume fraction, extrusion temperature, tensile test temperature and initial strain rate were changed. Fracture surface of tested specimens were observed by SEM. By the results, it became possible to produce superplastic composites by applying only a hot extrusion process to composites obtained by the squeeze casting. The superplastic composites developed are ${\alpha}-Si_3N_4w/7075$, ${\alpha}-Si_3N_4w/2024$ and ${\beta}-SiCw/2024$ systems at high strain rate.

  • PDF

Comparison of Physicochemical Properties of Extruded Ginseng Samples

  • Ji, Yan-Qing;Yang, Hye-Jin;Tie, Jin;Kim, Mi-Hwan;Ryu, Gi-Hyung
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.4
    • /
    • pp.299-305
    • /
    • 2008
  • This study compared the physicochemical properties of root hair of white ginseng (WG), root hair of tissue cultured mountain ginseng (MG), root hair of red ginseng (RG) and extruded ginseng samples. The comparison of crude ash and total sugar resulted insignificant differences between extruded and raw samples. MG had a higher content of crude ash, crude protein, amino acids and polyphenolic compound than WG and RG; the total sugar and reducing sugar were highest in RG. Crude fat and acidic polysaccharide in RG and WG were similar to and higher than MG. Crude saponin of treated samples WG1 (moisture content 25%, barrel temperature $110^{\circ}C$) and WG3 (moisture content 35%, barrel temperature $110^{\circ}C$) were 9.80% and 9.73%, respectively, which were the highest among ginseng samples. In conclusion, the extrusion process can be applied to red ginseng manufacturing, and some characteristics of MG were higher than in RG and WG.