Browse > Article
http://dx.doi.org/10.7841/ksbbj.2012.27.3.137

Saccharification and Ethanol Production from Chlorella sp. Through High Speed Extrusion Pretreatment  

Lee, Choon-Geun (Department of Biomedical Materials Engineering, Kangwon National University)
Choi, Woon-Yong (Department of Biomedical Materials Engineering, Kangwon National University)
Seo, Yong-Chang (Department of Biomedical Materials Engineering, Kangwon National University)
Song, Chi-Ho (Department of Biomedical Materials Engineering, Kangwon National University)
Ahn, Ju-Hee (Department of Biomedical Materials Engineering, Kangwon National University)
Jung, Kyung-Hwan (Department of Biotechnology, Korea National University of Transportation)
Lee, Sang-Eun (Department of Biotechnology, Korea National University of Transportation)
Kang, Do-Hyung (Korea Institute of Ocean Science & Technology (KIOST))
Lee, Hyeon-Yong (Department of Teaics, Seowon University)
Publication Information
KSBB Journal / v.27, no.3, 2012 , pp. 137-144 More about this Journal
Abstract
Among various pretreatment processes for bioethanol production, extrusion pretreatment, one of cheap and simple process was investigated to efficiently produce fermentable sugars from micro alga, Chlorella sp. The biomass was pretreated in a single screw extruder at five different barrel temperatures of 45, 50, 55, 60 and $65^{\circ}C$, respectively with five screw rotation speed of 10, 50, 100, 150 and 200 rpm. The pretreated biomass was reacted with two different hydrolyzing enzymes of cellulase and amyloglucosidase since the biomass contained different types of carbohydrates, compared to cellulose of agricultural by-products such wheat and corn stovers, etc. In general, higher glucose conversion yield was obtained as 13.24 (%, w/w) at $55^{\circ}C$ of barrel temperature and 100 rpm of screw speed conditions. In treating 5 FPU/glucan of cellulase and 150 Unit/mL of amyloglucosidase, ca. 64% of cellulose and 40% of polysaccharides in the micro alga were converted into glucose, which was higher yields than those from other reported data without applying an extrusion process. 84% of the fermentable sugars obtained from the hyrolyzing processes were fermented into ethanol in considering 50% of theoretical maximum fermentation yield of the yeast. These results implied that high speed extrusion could be suitable as a pretreatment process for the production of bioethanol from Chlorella sp.
Keywords
Extruder; Pretreatment; Bioethanol; Microalgae; Enzyme treatment;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lee, J. W., S. J. Lee, Y. H. Oh, D. H. Kim, D. Y. Kwon, and C. G. Lee (2011) Converting carbohydrates extracted from marine algae into ethanol using various ethanolic Escherichia coli Strains. Appl. Biochem. Biotechnol. 164: 878-888.   DOI
2 Gouveia, L., J. R. Miranda, and P. C. Passarinho (2011) Pretreatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresource Technol. 104: 342-348.
3 Halima, R., R. Harun, M. K. Danquaha, and P. A. Webleya (2011) Microalgal cell disruption for bioethanol production. Appl. Energy 91: 116-121.
4 Fang, Z., T. Sato, R. L. Smith-Jr, H. Inomata, K. Arai, and J. A. Kozimski (2008) Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water. Bioresource Technol. 99: 3424-3430.   DOI
5 Zhang, S., J. Zhu, and C. Wang (2004) Novel high pressure extraction technology. Int. J. Pharmaceut. 278: 471-474.   DOI   ScienceOn
6 Guillard, R. R. L. (1975) Culture of phytoplankton for feeding marine invertebrate. pp. 296-360. In: W. L. Smith and M. H. Chanley (eds.). Culture of Marine Invertebrates Animals. Plenum, New York, USA.
7 Linde, M., M. Galbe, and G. Zacchi (2008) Bioethanol production from non-starch carbohydrate residues in process stream from a dry-mill ethanol plant. Bioresource Technol. 99: 6505-6511.   DOI   ScienceOn
8 Han, J. G., S. H. Oh, M. H Jeong, H. B. Seo, K. H. Jeong, and H. Y. Lee (2010) Enhancement of sacchrification yield of Ulva pertusa kjellman for ethanol production through high temperature liquefaction process. KSBB J. 25: 245-362.
9 Lishi, Y., Z. Hongman, C. Jingwen, L. Zengxiang, J. Qiang, J. Honghua, and H. He (2008) Dilute sulfuric acid cycle spray flow-through pretreatment of corn stover for enhancement of sugar recovery. Bioresource Technol. 100: 1803-1808.
10 Meuser, F. (1989) Technological aspects regarding specific changes to the characteristic properties of extrudates by HTST extrusion cooking. pp. 35-53. In: B. Van Lengerich and F. Kohler (eds.). Physical Properties of Foods. Elsevier Applied Science Pub., London, UK.
11 Choi, J. W., H. J. Lim, K. S. Han, H. Y. Kang, and D. H. Choi (2005) Characterization of degradation features and degradative product of poplar wood (populusalba ${\times}$ glandulosa) by flow type-supercritical water treatment. J. Kor. For. En. 24: 39-46.
12 Ryu, K. H. and B. S. Kim (2005) Properties of extracts from extruded root and white ginseng at different conditions. J. Korean Soc. Food Sci. Nutr. 34: 306-310.   과학기술학회마을   DOI
13 Palmqvist, E., B. Hahn-Hagerdal, M. Galbe, and G. Zacchi (1996) The effect of water-soluble inhibitors from steam-pretreated willow on enzymatic hydrolysis and ethanol fermentation. Enzym. Microb. Technol. 19: 470-476.   DOI   ScienceOn
14 Martin, C., C. F. Wahlbom, M. Galbe, L. J. Jonsson, and B. Hahn-Hagerdal (2001) Preparation of sugarcane bagasse hydrolysates for alcoholic fermentation by yeasts. Enzym. Microb. Technol. 7: 361-367.
15 Karunanithy, C. and K. Muthukumarappan (2010) Influence of extruder temperature and screw speed on pretreatment of corn stover while varying enzymes and their ratios. Appl. Biochem. Bioethanol. 162: 264-279.   DOI
16 Fu, C. C., T. C. Hung, J. Y. Chen, C. H. Su, and W. T. Wu (2010) Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. Bioresource. Technol. 101: 8750-8754.   DOI
17 Woo, H. C., J. H. Lee, and J. I. Park (2008) Production of bio-energy from marine algae: status and perspectives. Korean Chem. Eng. Res. 46: 833-844.   과학기술학회마을
18 Chu, F. E., J. L. Dupuya, and K. L. Webb (1982) Polysaccharide composition of five algal species used as food for larvae of the american oyster, Crassostrea Virginica. Aquaculture. 29: 241-252.   DOI
19 Gray, K. A., L. Zhao, and M. Emptage (2006) Bioethanol. Curr. Opin. 10: 141-146.   DOI
20 Diaz, M. J., C. Cara, E. Ruiz, I. Romero, M. Moya, and E. Castro (2010) Hydrothermal pre-treatment of rapeseed straw. Bioresource Technol. 101: 2428-2435.   DOI   ScienceOn
21 Kumar, S., U. Kothari, L. Kong, Y. Y. Lee, and R. B. Gupta (2011) Hydrothermal pretreatment of switchgrass and corn stover for production of ethanol and carbon microspheres. Biomass Bioenerg. 35: 956-968.   DOI
22 Liu, Z. Y., G. C. Wang, and B. C. Zhou (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource. Technol. 99: 4717-4722.   DOI
23 Huang, G., F. Chen, D. Wei, X. Zhang, and G. Chen (2010) Biodiesel production by microalgal biotechnology. Appl. Energy 87: 38-46.   DOI
24 Amaro, H. M., A. C. Guedes, and F. X. Malcata. (2011) Advances and perspectives in using microalgae to produce biodiesel. Appl. Energy. 88: 3402-3410.   DOI   ScienceOn
25 Choi, S. P., M. T. Nguyen, and S. J. Sim (2010) Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresource. Technol. 101: 5330-5336.   DOI   ScienceOn
26 Yamada, T. and K. Sakaguchi (1982) Comparative studies on Chlorella cell walls: induction of protoplast formation. Arch. Microbiol. 132: 10-13.   DOI
27 Allard, B. and J. Templier (2000) Comparison of neutral lipid profile of various trilaminar outer cell wall (TLS)-containing microalgae with emphasis on algaenan occurrence. Phytochemistry 54: 369-380.   DOI
28 Wikandari, R., R. Millati, S. Syamsiyah, R. Muriana, and Y. Ayuningsih (2010) Effect of furfural, hydroxymethylfurfural and acetic acid on indigeneous microbial isolate for bioethanol production. Agricultural J. 5: 105-109.   DOI
29 Atkinson, A. W., B. E. S. Gunning, and P. C. L. John. (1972) "Sporopollenin in the cell wall of chlorella and other algae: ultrastructure, chemistry, and incorporation of 14C-acetate, studied in synchronous cultures. Planta 107: 1-32.   DOI
30 Koo, S. Y., K. H. Cha, and D. U. Lee (2007) Effects of high hydrostatic pressure of foods and biological system. Food Sci. Ind. 40: 23-30.
31 Chisti, Y. (2008) Biodiesel from microalgae beats bioethanol. Trends. Biotechnol. 26: 126-131.   DOI
32 Saulnier, L., C. Marot, E. Chanliaud, and J. F. Thibault (1995) Cell wall polysaccharide interaction in maize bran. Carbohydr. Polym. 26: 279-287.   DOI   ScienceOn
33 Miranda, J. R., P. C. Passarinho, and L. Gouveia (2012) Pretreatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresource. Technol. 104: 342-348.   DOI   ScienceOn
34 Singh, J. and S. Gu (2010) Commercialization potential of microalgae for biofuels production. J. Renew. Sustain. Ener. 14: 2596-2610.   DOI
35 Talbot, P., J. M. Thébault, A. Dauta, and J. de la Noüe (1991) A comparative study and mathematical modeling of temperature, light and growth of three microalgae potentially useful for wastewater treatment. Water Res. 25: 465-472.   DOI
36 Fernandes, B., G. Dragone, J. Teixeira, and A. Vicente (2010) Light regime characterization in an airlift photobioreactor for production of microalgae with high starch content. Appl. Biochem. Biotechnol. 161: 218-226.   DOI