• Title/Summary/Keyword: Extreme-Pressure

Search Result 314, Processing Time 0.028 seconds

The Variation of Extreme Values in the Precipitation and Wind Speed During 56 Years in Korea (56년간 한반도 강수 및 풍속의 극값 변화)

  • Choi, Eu-Soo;Moon, Il-Ju
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.397-416
    • /
    • 2008
  • This study investigates a long-term variation of the annual extreme value for the instantaneous wind speed and the daily precipitation during 56 years (1951-2006) in Korea. Results show that there is a uptrend for both wind and precipitation extreme records, although regional trends are different from overall pattern in some places, particularly for wind speed. The estimated linear trends are 230 mm/56 yr in the daily precipitation and $15ms^{-1}$/56 yr in the maximum instantaneous wind speed. For precipitation, other indexes such as total annual precipitation, the number of extreme precipitation event, and precipitation intensity have dramatically increased as well, while there has been a clear downtrend for the number of strong wind events (> $14ms^{-1}$). It is found that the minimum surface pressure recorded during typhoon attacks in Korea tends to be decreasing, about 10 hPa/56 yr. This partly explains why the extreme values in the precipitation are increasing in Korea.

A Numerical Study on Shape Design Optimization for an Impeller of a Centrifugal Compressor (원심압축기 임펠러의 형상 설계 최적화에 관한 수치적 연구)

  • Seo, JeongMin;Park, Jun Young;Choi, Bum Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.3
    • /
    • pp.5-12
    • /
    • 2014
  • This paper presents a design optimization for meridional profile and blade angle ${\theta}$ of a centrifugal compressor with DOE (design of experiments) and RSM (response surface method). Control points of the $3^{rd}$ order Bezier curve are used for design parameters and specific overall efficiency is used as object function. The response surface function shows good agreement with the 3D computational results. Three different optimized designs are proposed and compared with reference design at design point and off-design point. Contours of relative Mach number, static entropy, and total pressure are analyzed for improvement of performance by optimization. Off-design performance analysis is conducted by total pressure and efficiency.

A Plan to Develop Seismic Capacity Verification Procedures Based on the Elastic-Plastic Strain Features (탄소성 변형률 기반 내진성능 평가 절차서 개발 방안)

  • Hwang, Jong Keun;Jeong, Ill Seok;Kim, Beom Shig;Ahn, Sang Won;Bang, Hye Jin;Lee, Min Hee;Jeong, Hyeon Seob
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.11-15
    • /
    • 2018
  • A development plan for seismic capacity verification procedures of nuclear components based on the elastic-plastic strain (EPS) features is explained in this paper. The EPS methodology is more realistic to assess seismic responses of components to extreme seismic events beyond the safe shutdown earthquake (SSE) than current practices with the criteria of stress limits. The EPS based approach to analyze the seismic capacity of components can reduce over-conservatism in the current stress-based criteria and can incorporate the seismic responses of components deformed in plastic behavior by the motion of extreme earthquake.

Study of random characteristics of fluctuating wind loads on ultra-large cooling towers in full construction process

  • Ke, S.T.;Xu, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.26 no.4
    • /
    • pp.191-204
    • /
    • 2018
  • This article presents a study of the largest-ever (height = 220 m) cooling tower using the large eddy simulation (LES) method. Information about fluid fields around the tower and 3D aerodynamic time history in full construction process were obtained, and the wind pressure distribution along the entire tower predicted by the developed model was compared with standard curves and measured curves to validate the effectiveness of the simulating method. Based on that, average wind pressure distribution and characteristics of fluid fields in the construction process of ultra-large cooling tower were investigated. The characteristics of fluid fields in full construction process and their working principles were investigated based on wind speeds and vorticities under different construction conditions. Then, time domain characteristics of ultra-large cooling towers in full construction process, including fluctuating wind loads, extreme wind loads, lift and drag coefficients, and relationship of measuring points, were studied and fitting formula of extreme wind load as a function of height was developed based on the nonlinear least square method. Additionally, the frequency domain characteristics of wind loads on the constructing tower, including wind pressure power spectrum at typical measuring points, lift and drag power spectrum, circumferential correlations between typical measuring points, and vertical correlations of lift coefficient and drag coefficient, were analyzed. The results revealed that the random characteristics of fluctuating wind loads, as well as corresponding extreme wind pressure and power spectra curves, varied significantly and in real time with the height of the constructing tower. This study provides references for design of wind loads during construction period of ultra-large cooling towers.

Non-Gaussian approach for equivalent static wind loads from wind tunnel measurements

  • Kassir, Wafaa;Soize, Christian;Heck, Jean-Vivien;De Oliveira, Fabrice
    • Wind and Structures
    • /
    • v.25 no.6
    • /
    • pp.589-608
    • /
    • 2017
  • A novel probabilistic approach is presented for estimating the equivalent static wind loads that produce a static response of the structure, which is "equivalent" in a probabilistic sense, to the extreme dynamic responses due to the unsteady pressure random field induced by the wind. This approach has especially been developed for complex structures (such as stadium roofs) for which the unsteady pressure field is measured in a boundary layer wind tunnel with a turbulent incident flow. The proposed method deals with the non-Gaussian nature of the unsteady pressure random field and presents a model that yields a good representation of both the quasi-static part and the dynamical part of the structural responses. The proposed approach is experimentally validated with a relatively simple application and is then applied to a stadium roof structure for which experimental measurements of unsteady pressures have been performed in boundary layer wind tunnel.

Variation Analysis of Storm Surges in Masan Bay due to Typhoon Landing-1. Extreme Simulation Typhoon Scenario (상륙 태풍에 의한 마산만 폭풍해일 변동성 분석 - 1. 극치 모의 태풍 시나리오의 결정)

  • Han, Sungdae
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.4
    • /
    • pp.493-505
    • /
    • 2015
  • Based on the typhoon paths landed on the southern coast of Korea, the distribution of typhoon moving directions follow the Beta probability density function and that of pressure drops in typhoon eyes follow the Rayleigh probability density function. Consequently, the extreme typhoon simulation scenarios for six landing positions are determined as most probable one in moving direction and extreme one of Typhoon Maemi level in pressure drop. The variation of storm surges in Masan bay associated with simulated typhoon landing position is analyzed through the numerical experiments in the next paper as the second part.

Development of a Prototype Data Logger System to Operate under Extreme High Pressure

  • Yoo, Nam-Hyun;Rhee, Sang-Yong;Lee, Hyeong-Ok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.113-121
    • /
    • 2014
  • A subsea oil production system must be safely operated for 20-30 years after being installed. Because of the severe conditions of the subsea environment, such as extreme high pressure, low visibility, the possibility of unexpected impact by any object, and corrosion by seawater, subsea oil production systems should be monitored by subsea data logger systems and remotely operated vehicles to check for abnormal vibration and leakage to prevent a catastrophic accident. Because of the severity of subsea environmental conditions and the dominance of a few companies in the market, many people have thought that it would be difficult to develop a subsea data logger system. The primary objectives of the study described in this paper were to analyze existing subsea data logger systems to establish the requirements for a subsea data logger system, implement a prototype subsea data logger system, and conduct a test of the prototype subsea data logger system.

A Study of Diffusion Bonding Process for High Temperature and High Pressure Micro Channel Heat Exchanger Using Inconel 617 (인코넬 617을 이용한 고온고압용 미세채널 열교환기의 확산접합 공정에 관한 연구)

  • Song, Chan Ho;Yoon, Seok Ho;Choi, Joon Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.2
    • /
    • pp.87-93
    • /
    • 2015
  • Recently, the heat exchangers are requiring higher performance and reliability since they are being used under the operating condition of high temperature and pressure. To satisfy these requirements, we need special materials and bonding technology. This study presents a manufacturing technology for high temperature and high pressure micro channel heat exchanger using Inconel 617. The bonding performance for diffusion bonded heat exchanger was examined and analyzed. The analysis were conducted by measuring thermal and mechanical properties such as thermal diffusivity and tensile strength, and parametric studies about bonding temperature and pressing force were also carried out. The results provided insight for bonding evaluation and the bonding condition of $1200^{\circ}C$, and 50 tons was found to be suitable for this heat exchanger. From the results, we were able to establish the base technology for the manufacturing of Inconel 617 heat exchanger through the application of the diffusion bonding.

Parametric study based on synthetic realizations of EARPG(1)/UPS for simulation of extreme value statistics

  • Seong, Seung H.
    • Wind and Structures
    • /
    • v.2 no.2
    • /
    • pp.85-94
    • /
    • 1999
  • The EARPG(1)/UPS was first developed by Seong (1993) and has been tested for wind pressure time series simulations (Seong and Peterka 1993, 1997, 1998) to prove its excellent performance for generating non-Gaussian time series, in particular, with large amplitude sharp peaks. This paper presents a parametric study focused on simulation of extreme value statistics based on the synthetic realizations of the EARPG(1)/UPS. The method is shown to have a great capability to simulate a wide range of non-Gaussian statistic values and extreme value statistics with exact target sample power spectrum. The variation of skewed long tail in PDF and extreme value distribution are illustrated as function of relevant parameters.

Study on Robust Control for Proportional Pressure Control Valve with MRC (MRC를 이용한 비례압력제어밸브의 강인한 제어에 관한 연구)

  • Yun, So-Nam;Jeong, Hwang-Hun;Lee, Ill-Young
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.77-84
    • /
    • 2013
  • The proportional pressure control valve that was used to relief valve has different dynamic characteristics on each case. Because this valve has different assembling or processing error and environmental condition. However, a customer who used the relief valve wants to have a steadily performance even if the dynamic characteristics of valve was changed. For this reason, the manufacturer try to make the robust controller that has simple structure. This paper concerns about the design of robust controller that didn't affected by plant parameter's changing. The control strategy is a model reference control that conducted by on line identification problem, gradient method and Lyapunov equation. This adaptvie control law's validity that this paper deal with was confirmed by an results of step response test or hysteresis test.