• 제목/요약/키워드: Extreme-Pressure

검색결과 314건 처리시간 0.024초

Large-scale Atmospheric Patterns associated with the 2018 Heatwave Prediction in the Korea-Japan Region using GloSea6

  • Jinhee Kang;Semin Yun;Jieun Wie;Sang-Min Lee;Johan Lee;Baek-Jo Kim;Byung-Kwon Moon
    • 한국지구과학회지
    • /
    • 제45권1호
    • /
    • pp.37-47
    • /
    • 2024
  • In the summer of 2018, the Korea-Japan (KJ) region experienced an extremely severe and prolonged heatwave. This study examines the GloSea6 model's prediction performance for the 2018 KJ heatwave event and investigates how its prediction skill is related to large-scale circulation patterns identified by the k-means clustering method. Cluster 1 pattern is characterized by a KJ high-pressure anomaly, Cluster 2 pattern is distinguished by an Eastern European high-pressure anomaly, and Cluster 3 pattern is associated with a Pacific-Japan pattern-like anomaly. By analyzing the spatial correlation coefficients between these three identified circulation patterns and GloSea6 predictions, we assessed the contribution of each circulation pattern to the heatwave lifecycle. Our results show that the Eastern European high-pressure pattern, in particular, plays a significant role in predicting the evolution of the development and peak phases of the 2018 KJ heatwave approximately two weeks in advance. Furthermore, this study suggests that an accurate representation of large-scale atmospheric circulations in upstream regions is a key factor in seasonal forecast models for improving the predictability of extreme weather events, such as the 2018 KJ heatwave.

태양광발전시스템의 안정성을 고려한 최적 각도 설정에 관한 연구 (A Study on the Optimal Angle Setting Considering the Stability of Photovoltaic Systems)

  • 이여진;한세경;김성열
    • 전기학회논문지
    • /
    • 제67권4호
    • /
    • pp.498-504
    • /
    • 2018
  • The conventional photovoltaic(PV) systems are designed the installation angle for maximizing power output by considering a geographical characteristics, weather and climate conditions such as the solar radiation and atmosphere temperature. However, the PV generators must be designed to deal with the extreme situations like typhoons, earthquakes because PV systems are exposed to the ambient conditions and external shock due to condition of PV location. Especially, the wind has relatively higher influence on the design of PV systems, in this paper we proposed the method of determining the optimal nominal dimension of the facilities, which can withstand the maximum wind pressure. By using the proposed method, we determined the optimal installation angle for the aspect stability of PV facilities and amount of power output. Moreover, we analyzed the monthly amount of power for each installation angle of PV systems, and proposed the changing strategy of installation angle by determining the optimal angle to produce maximum power for each period.

유압 서보 구동기의 동특성을 고려한 진동 시험기의 반복 피드포워드 제어 (Iterative Feed-forward Control of Shaking Table System Based on FRF of Hydraulic Actuator)

  • 이동재;박영진;박윤식;김형의;박종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.556-560
    • /
    • 2007
  • In this paper, the research results for the improvement of tracking performance of a hydraulic shaking table are presented. A servo-hydraulic shaking table is not only highly nonlinear but also has a lot of time delay. In addition, the shaking table, which consists of multi axial hydraulic actuators, is a MIMO system coupled by kinematics and dynamics of each other's actuators. And it is demanded for the shaking table to track arbitrary trajectories up to high frequency even at the extreme situations such as substantial external loads and large disturbances. For this purpose, an iterative feed-forward control based on the inverse of a measured frequency response function is used for the shaking table. To solve the dynamic coupling, a pressure feedback control as numerical damping is used. It is shown through numerical simulations that the tracking performance of shaking table is improved up to 100Hz.

  • PDF

굴삭기의 정적/동적 응력 및 구동 특성 계측 (Measurement of Static and Dynamic Stress and Motion Characteristics of Excavators)

  • 김규성;정준모;장영식;최익흥;이준희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.473-478
    • /
    • 2003
  • This paper presents static and dynamic measurement of the stress and motion characteristics for crawler type excavators. Eight scenarios were prepared for static measurement based on two extreme digging positions, maximum digging reach position and maximum digging force position. The measured items for static motion included stress, cylinder pressure, cylinder stroke and digging force. The measured static stresses showed that asymmetric digging force acting on a bucket induced higher stress level than symmetric one. The measured static pressures and digging forces also agreed with design pressures and design digging forces, respectively. The dynamic measurement was performed for two types of motion, that is, simple reciprocation of each cylinder and actual digging motion. The measured items for dynamic motion were stroke and pressure of each cylinder, stresses on the working device and acceleration on the upper plate of an arm. The measured data showed that the natural frequency of the excavator highly depended on the hydraulic stiffness of cylinders. Digging motion tests revealed that digging motion was closer to static motion rather than dynamic one.

  • PDF

안전밸브가 장착된 휴대용 부탄캔에 대한 안전성 평가 연구 (Safety Evaluation of Non-refillable Butane Can Equipped with Relief Valve for Prevention of Explosion)

  • 강승규;최경석
    • 에너지공학
    • /
    • 제17권4호
    • /
    • pp.212-217
    • /
    • 2008
  • 본 연구는 이동식 부탄연소기에 사용되는 1회용 부탄캔의 변형 및 폭발을 방지하기 위하여, 캔에 안전밸브를 장착한 폭발방지 부탄캔에 대한 사용 중 안전성을 평가하였다. 실제 사용환경에서 설계압력의 오차 범위 내에서 안전밸브가 작동하는지, 안전밸브의 분출유량은 캔의 변형 및 폭발을 방지하기에 적정하게 설계되었는지, 그리고 안전밸브 작동으로 인하여 가스가 누출되었을 때 주변의 점화원에 의한 화재 및 폭발의 위험성 등을 평가하였다. 본 연구를 통해 개발제품이 외부열원에 의한 부탄캔의 내압상승을 방지하여 캔의 폭발을 방지하는 것으로 평가되었다.

Influence of Impact from Anti-Aircraft Bullet on Rotorcraft Fuel Tank Assembly

  • Kim, Sung Chan;Kim, Hyun Gi
    • International Journal of Aerospace System Engineering
    • /
    • 제5권1호
    • /
    • pp.1-8
    • /
    • 2018
  • Military rotorcrafts are constantly exposed to risk from bullet impacts because they operate in a battle environment. Because bullet impact damage can be deadly to crews, the fuel tanks of military rotorcraft must be designed taking extreme situations into account. Fuel tank design factors to be considered include the internal fluid pressure, the structural stress on the part impacted, and the kinetic energy of bullet strikes. Verification testing using real objects is the best way to obtain these design data effectively, but this imposes substantial burdens due to the huge cost and necessity for long-term preparation. The use of various numerical simulation tests at an early design stage can reduce the risk of trial-and-error and improve the prediction of performance. The present study was an investigation of the effects of bullet impacts on a fuel tank assembly using numerical simulation based on SPH (smoothed particle hydrodynamics), and conducted using the commercial package, LS-DYNA. The resulting equivalent stress, internal pressure, and kinetic energy of the bullet were examined in detail to evaluate the possible use of this numerical method to obtain configuration design data for the fuel tank assembly.

Characteristics of dissolved gases separated from water mixed with exhalation gases without using a compressor

  • Heo, Pil Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권10호
    • /
    • pp.916-921
    • /
    • 2016
  • It is possible for humans to breathe underwater using dissolved oxygen. However, unlike fish, humans need large amounts of oxygen to breathe underwater. Water generally contains small amounts of dissolved oxygen. To get enough dissolved oxygen from water, great volumes of it should be supplied into a separation device. If exhalation gases are used, the amounts of water supplied into the membrane can be decreased. However, the characteristics of exhalation gases after passage through the separation device need to be investigated. To reuse the exhalation gases, the concentration of carbon dioxide should be decreased. A compressor is needed to supply the exhalation gases because of the high pressure generated in the membrane inlet. However, compressors require a lot of power and are heavy, so it is not proper to get the portable separation device. A system without the compressor is needed. If the pressure of the position mixed from the exhalation is less than atmosphere, the compressor is not needed. In this thesis, characteristics of the gases which are mixed with exhalation gases and separated from water after passing the membrane are investigated. The compositions of carbon dioxide, oxygen, and nitrogen are measured with the gas chromatography. The effects of water and exhalation gas flow rates on characteristics of gases separated from water after the membrane are showed.

Finding the best combination of numerical schemes for 2-D SPH simulation of wedge water entry for a wide range of deadrise angles

  • Farsi, Mohammad;Ghadimi, Parviz
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권3호
    • /
    • pp.638-651
    • /
    • 2014
  • Main aim of this paper is to find the best combination of numerical schemes for 2-D SPH simulation of wedge water entry. Diffusion term is considered as laminar, turbulent, and artificial viscosity. Density filter that seriously affects the pressure distribution is investigated by adopting no filter, first order filter, and second order filter. Validation of the results indicates that turbulent model and first order density filter can lead to more reasonable solutions. This simulation was then conducted for wedge water entry with wide range of deadrise angles including 10 degrees, 20 degrees, 30 degrees, 45 degrees, 60 degrees and 81 degrees, with extreme deadrise angles of 10 degrees, 60 degrees and 81 degrees being considered. Comparison of SPH results with BEM solutions has displayed favorable agreement. In two particular cases where experimental data are available, the SPH results are shown to be closer to the experiments than BEM solution. While, accuracy of the obtained results for moderate deadrise angles is desirable, numerical findings for very small or very large deadrise angles are also very reasonable.

티타늄의 에어로졸 건조 윤활(ADL) 가공에서 온도 및 표면거칠기 분석 (Analysis of Temperature and Surface Roughness in Aerosol Dry Lubrication (ADL) Machining for Titanium)

  • 한정식;정종윤
    • 산업경영시스템학회지
    • /
    • 제45권4호
    • /
    • pp.61-69
    • /
    • 2022
  • The function of coolant in machining is to reduce the frictional force in the contact area in between the tool and the material, and to increase the precision by cooling the work-piece and the tool, to make the machining surface uniform, and to extend the tool life. However, cutting oil is harmful to the human body because it uses chlorine-based extreme pressure additives to cause environmental pollutants. In this study, the effect of cutting temperature and surface roughness of titanium alloy for medical purpose (Ti-6Al-7Nb) in eco-friendly ADL slot shape machining was investigated using the response surface analysis method. As the design of the experiment, three levels of cutting speed, feed rate, and depth of cut were designed and the experiment was conducted using the central composite planning method. The regression expressions of cutting temperature and surface roughness were respectively obtained as quadratic functions to obtain the minimum value and optimal cutting conditions. The values from this formula and the experimental values were compared. As a result, this study makes and establishes the basis to prevent environmental pollution caused by the use of coolant and to replace it with ADL (Aerosol Dry Lubricant) machining that uses a very small amount of vegetable oil with high pressure.

스포츠 무릎보호대 제품 분석 - 중국 웹사이트를 중심으로 - (Analysis of sports knee brace products - Focusing on Chinese websites -)

  • 마효청;장정아
    • 복식문화연구
    • /
    • 제31권5호
    • /
    • pp.692-704
    • /
    • 2023
  • This study analyzed 214 sports knee braces found on Chinese websites between October 2022 and November 2022 to assess product type (impact protection material, fastening method, and protection method), material composition, size, weight, and main characteristics. The product type was further categorized according to (1) use of hard guard and soft guard protection method; (2) cover type, strap type, and slip-on type fastening method; and (3) pressure type and support type protection method. It also noted the physical shock protection materials used, including foam (EVA or polyurethane) attached to joints as a buffer material and plastic (TPU or PP) that protects the user's knee from external impacts. The study found that the materials that primarily comprise sports knee braces are a combination of nylon, polyester, and neoprene. Additionally, it found that most sports knee braces available on the market are available in three sizes based on knee circumference: M (35-38cm), L (38-41cm), and XL (41-44cm), while some products are available in one size only. Furthermore, the majority of the 214 products studied weighed 200g, followed by 1,000g. Finally, in terms of product characteristics, many sports knee braces utilize ring-shaped silicone pads to distribute the load pressure on the knees or incorporate sturdy adhesive velcro to improve knee stability.