Huang, Mingfeng;Li, Qiang;Xu, Haiwei;Lou, Wenjuan;Lin, Ning
Wind and Structures
/
제26권3호
/
pp.129-146
/
2018
Extreme wind speed analysis has been carried out conventionally by assuming the extreme series data is stationary. However, time-varying trends of the extreme wind speed series could be detected at many surface meteorological stations in China. Two main reasons, exposure change and climate change, were provided to explain the temporal trends of daily maximum wind speed and annual maximum wind speed series data, recorded at Hangzhou (China) meteorological station. After making a correction on wind speed series for time varying exposure, it is necessary to perform non-stationary statistical modeling on the corrected extreme wind speed data series in addition to the classical extreme value analysis. The generalized extreme value (GEV) distribution with time-dependent location and scale parameters was selected as a non-stationary model to describe the corrected extreme wind speed series. The obtained non-stationary extreme value models were then used to estimate the non-stationary extreme wind speed quantiles with various mean recurrence intervals (MRIs) considering changing climate, and compared to the corresponding stationary ones with various MRIs for the Hangzhou area in China. The results indicate that the non-stationary property or dependence of extreme wind speed data should be carefully evaluated and reflected in the determination of design wind speeds.
Communications for Statistical Applications and Methods
/
제3권2호
/
pp.249-273
/
1996
This paper reviews and develops several statistical models for extreme values, based on threshold methodology. Extreme values of a time series are modeled in terms of tails which are defined as truncated forms of original variables, and Markov property is imposed on the tails. Tails of the generalized extreme value distribution and a multivariate extreme value distributively, of the tails of the series. These models are then applied to real ozone data series collected in the Chicago area. A major concern is given to detecting any possible trend in the extreme values.
The common practice to predict the characteristic structural load effects (LEs) in long reference periods is to employ the extreme value theory (EVT) for building limit distributions. However, most applications ignore that LEs are driven by multiple loading events and thus do not have the identical distribution, a prerequisite for EVT. In this study, we propose the composite extreme value modeling approach using clustering to (a) cluster initial blended samples into finite identical distributed subsamples using the finite mixture model, expectation-maximization algorithm, and the Akaike information criterion; (b) combine limit distributions of subsamples into a composite prediction equation using the generalized Pareto distribution based on a joint threshold. The proposed approach was validated both through numerical examples with known solutions and engineering applications of bridge traffic LEs on a long-span bridge. The results indicate that a joint threshold largely benefits the composite extreme value modeling, many appropriate tail approaching models can be used, and the equation form is simply the sum of the weighted models. In numerical examples, the proposed approach using clustering generated accurate extrema prediction of any reference period compared with the known solutions, whereas the common practice of employing EVT without clustering on the mixture data showed large deviations. Real-world bridge traffic LEs are driven by multi-events and present multipeak distributions, and the proposed approach is more capable of capturing the tendency of tailed LEs than the conventional approach. The proposed approach is expected to have wide applications to general problems such as samples that are driven by multiple events and that do not have the identical distribution.
본 논문에서는 비정상 극치 강수 자료에 대해 계층적 베이지안 모형을 적용하여 시간에 따른 모수의 변화를 추정하며, 미래 확률 강수량에 대한 극단값 분포를 예측하고 더 나아가 반환기간에 대한 경향과 예측 값을 얻고자 한다. 이전의 고전적 통계 방법을 통한 강수 자료의 모수 추정연구의 경우, 자료의 정상성 가정 하에 고정된 모수를 추정하는 방법으로, 최근 나타난 비정상 강수 사상과 같이 강수량이 가지는 분포의 모수적 변화가 예상되는 경우 해석상 문제가 발생한다. 이러한 문제점을 해결하기 위해 모형의 관심모수에 시간에 따른 자기 상관 선형 회귀 함수를 적합한 계층적 베이지안 모형을 고려한다. 제안된 모형의 효율성을 확인하기 위해서 1973년부터 2011년까지 39년 동안의 우리나라 여러지역의 기상 관측소에서 관측된 일일 강우량 자료가 사용하여 대표적인 극단값 분포인 Generalized Extreme Value(GEV) 분포에 적합시키고, 계층적 베이지안 모형을 이용하여 이들 분포의 모수들에 자기상관 시간모형을 소개한 후 우리나라 여러지역에 대한 반환기간에 대한 시간에 따른 경향을 확인하였다.
집중호우의 특성을 이해하는 것은 수문관리 및 재해방재 등에서 매우 중요하다. 특히 반환주기는 이러한 집중호우의 특성을 나타내는 측정치로 자주 사용된다. 본 논문에서는 베이지안 계층적 모형을 이용하여 강우의 반환주기에 대한 공간구조를 분석하였다. 먼저 국내 62개 지점에서 측정한 강우 강도을 기초로 하여 연간 일일 최대강우량과 특정한 수준을 초과하는 강우량에 대해서 generalized extreme value(GEV)와 generalized Pareto distribution(GPD)를 각각 가정하여 추정하였다. 집중호우 반환주기에 대한 공간구조는 이 GEV 분포와 GPD 분포의 모수에 공간구조를 가지는 다변량 정규분포를 이용하여 설명하였다. 제안된 모형을 국내 76개 지역에서 39년간 측정된 일별 강우량 관측자료에 적용하였다.
Communications for Statistical Applications and Methods
/
제25권1호
/
pp.15-27
/
2018
Parametric method of flood frequency analysis involves fitting of a probability distribution to observed flood data. When record length at a given site is relatively shorter and hard to apply the asymptotic theory, an alternative distribution to the generalized extreme value (GEV) distribution is often used. In this study, we consider the beta-P distribution (BPD) as an alternative to the GEV and other well-known distributions for modeling extreme events of small or moderate samples as well as highly skewed or heavy tailed data. The L-moments ratio diagram shows that special cases of the BPD include the generalized logistic, three-parameter log-normal, and GEV distributions. To estimate the parameters in the distribution, the method of moments, L-moments, and maximum likelihood estimation methods are considered. A Monte-Carlo study is then conducted to compare these three estimation methods. Our result suggests that the L-moments estimator works better than the other estimators for this model of small or moderate samples. Two applications to the annual maximum stream flow of Colorado and the rainfall data from cloud seeding experiments in Southern Florida are reported to show the usefulness of the BPD for modeling hydrologic events. In these examples, BPD turns out to work better than $beta-{\kappa}$, Gumbel, and GEV distributions.
폭염, 폭우와 가뭄 등과 같은 이상 기후 현상에 대한 적절한 대응이 최근 많이 요구되고 있다. 이상 기후 현상을 분석하기 위해 극단값 분석 기법을 적용할 수 있는데, 본 논문은에서는 한국의 여름철 강수량 자료(1973년부터 2012년까지의 5월부터 9월)를 분계점 초과값 모형으로 분석해보았다. 분계점은 한국의 기상관측소들을 5개의 군집으로 나누어, 각 군집별로 지리 정보와 시간을 공변량으로 하는 분위수 회귀 방법을 통하여 추정하였다. Northrop과 Jonathan (2011)과 같이 극단값들이 시공간적으로 독립이라고 가정하고 분석한 후, 추정오차와 검정 과정에 공간 종속성을 반영하였다.
극치사상을 예측하기 위한 기존의 빈도분석 결과의 이용에 대한 많은 문제점들이 부각되고 있다. 특히, 통계적 모형을 이용하기 위해서 흔히 사용되는 점근적 모형 (asymptotic model)의 합리적인 검토 없는 외삽 (extrapolation)은 산정된 확률 값을 과대 또는 과소평가하는 문제를 일으켜, 예측결과에 대한 불확실성을 과다하게 산정함으로써 불확실성에 대한 신뢰도를 감소시키는 문제가 있다. 그러므로 본 연구에서는 국내에서 극치강우사상을 포함한 강우자료의 빈도분석에 대한 연구사례를 제공하고 점근적 모형을 사용하는 경우 발생되는 불확실성을 감소시키기 위한 방법론을 제시하였다. 이를 위하여 본 연구에서는 극치강우사상의 빈도분석을 수행하는 데 있어서 최근 들어 여러 분야에서 다양하게 적용되고 있는 Bayesian MCMC (Markov Chain Monte Carlo) 방법을 사용하였으며, 그 결과를 최우추정방법 (Maximum likelihood estimation method)과 비교하였다. 특히 강우사상의 점 빈도분석에 흔히 이용되는 확률밀도함수로 GEV (Generalized Extreme Value) 분포와 Gumbel 분포를 모두 고려하여 두 분포의 결과를 비교하였으며, 이 과정에서 각각의 산정결과 및 불확실성은 근사식을 이용한 최우추정방법과 Bayesian 방법을 이용하여 각각 비교 및 분석되었다.
Hourly ozone data are available for 73 stations in South Korea from January, 1988 to August, 1998. We are interested in detecting trends in both the mean levels and the extremes of ozone, and in determining how these trends vary over the country. The latter aspect means that we also have to understand the spatial dependence of ozone. In this connection, therefore, we examine in this paper the following features: determining trends in mean ozone levels at individual stations and combination across stations; determining trends in extreme ozone levels at individual stations and combination across stations; spatial modeling of trends in mean and extreme ozone levels.
통계적 구조물 손상진단에서 기저분포는 구조물에 손상이 없을 때 획득된 동적 응답 특성이 이루는 통계 분포이다. 일반적으로 구조물에 손상이 발생했을 때 손상에 민감한 구조물의 동적 응답 특성은 기저분포의 꼬리 부근에 주로 나타나게 된다. 최근 연구자들은 기저분포의 꼬리 부분을 정확하게 모사하기 위해 극치분포에 주목하고 있으나, 구조물 손상진단의 관점에서 극치분포의 이론적 이해에 대한 연구는 거의 이루어지지 않았다. 이 연구에서는 신뢰성 있는 통계적 구조물 손상진단을 위해 필요한 극치분포의 점근적 수렴성을 매개변수 추정법을 이용하여 규명한다. 특히, 극치 추출에 필요한 표본크기와 극치분포의 점근적 수렴성의 관계를 정량적으로 보인다. 또한, 극치분포 추정에서 표본크기와 통계적 구조물 손상진단에서 발생하는 손상오류경보 빈도에 대한 관계를 정량적으로 규명한다. 차량 이동하중을 받는 2경간 트러스 교량에서 수치해석 기법을 통해 모사된 가속도 데이터를 이용하여 제안된 기법의 타당성을 검증한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.