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Modeling Extreme Values of Ground-Level Ozone Based on
Threshold Methods for Markov Chains

Seokhoon Yun'

Abstract

This paper reviews and develops several statistical models for extreme values,
based on threshold methodology. Extreme values of a time series are modeled in
terms of tails which are defined as truncated forms of original variables, and Markov
property is imposed on the tails. Tails of the generalized extreme value distribution
and a multivariate extreme value distribution are proposed to be used as models for
the marginal and the joint distributions, respectively, of the tails of the series. These
models are then applied to real ozone data series collected in the Chicago area. A
major concern is given to detecting any possible trend in the extreme values.

1. Introduction

Extreme value analysis plays an important role in environmental time series where extreme
values are major concerns. In this paper we review and develop some statistical models
based on the so-called threshold method which has nowadays become a standard one in
analyzing extreme values. Threshold method is a statistical method based on exceedances
over a high threshold. Extension to Markov chain models is also studied to take serial
dependence of extreme values into account. The models are then applied to the ground-level
ozone data collected in the Chicago area. Since excessive levels of ozone are generally taken
as an indication of high air pollution, our prime concern is to detect any possible trend, if
exists, in the extreme values. The questions to be answered contain estimation problems for
the exceedance probability of a high threshold and 100-year return levels.

Classical extreme value analysis is based on the generalized extreme value distribution
defined by

G(x,/z,a,é')=exp[ _{1+_ﬂ%’:&};1/e] , X€ER, (1.1

which typically appears as the limit of distributions for normalized maxima in iid. random
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variables. Here x.=max{x,0}, and £ €ER, ¢ >0 and £ ER are called location, scale and shape
parameters respectively. The case £ =0 is interpreted as the limit &€ —0, which is often called
the Gumbel type. The cases £ >0 and £ <0 are also called the Fréchet and Weibull types
respectively. Distribution (1.1) was originally introduced by Fisher and Tippett (1928). For a
complete derivation of (1.1), the reader is referred to Leadbetter, Lindgren and Rootzén (1983)
or Resnick (1987). Statistical application, for instance, is to fit (1.1) to annual maxima of a
given time series. This method however requires that the series should be long enough to
get a good fit.

A modern approach to extreme value analysis is based on the threshold method which
adopts the generalized Pareto distribution defined by

-1/¢
H(M¢,E)=1-(1+—%1)+1 . >0 12)

as the model for excesses, the magnitudes of exceedances, over a high threshold. Unlike
(1.1), distribution (1.2), which was derived by Pickands (1975), has only two parameters, scale
¢ >0 and shape € ER. The case £=0 is, as before, interpreted as the limit & —0, which
corresponds to the exponential distribution with mean ¢. For statistical application, see
Smith (1984), Hosking and Wallis (1987) and Davison and Smith (1990). Naive application is
to fit (1.2) to all excesses over a high threshold assuming they are independent. Under
stationarity of observations, Hsing (1987) and Hsing, Hiisler and Leadbetter (1988) showed
that high-level exceedances tend to form independent clusters. One may therefore apply (1.2)
to cluster maxima instead of all exceedances over a high threshold. In practice, it is not
however easy to characterize clusters and it is moreover wasteful to use only the cluster
maxima and discard most of the exceedance data which may contain valuable information.

The first attempt to compensate for this was given by Joe, Smith and Weissman (1992),
and extended to Markov chains by Smith, Tawn and Coles (1993) and Smith (1993). They
derived an appropriate model for the joint distribution of all exceedances within a cluster
using the theory of domains of attraction of multivariate extreme value distributions.
Galambos (1987) and Resnick (1987) have a good review on this theory. This paper takes the
form of a case study, yet proposing and developing variants of existing models in threshold
methodology. Specifically, we model extreme values of a given time series in terms of tails
of that series and then impose Markov property on the tails. Tails of a time series are
defined as truncated forms of original variables, which have all the information about excesses
over a high threshold as well as its exceedance probability. Tails of distribution (1.1) and a
multivariate extreme value distribution are proposed to be used as models for the marginal
and the joint distributions, respectively, of the tails of the series. The proposed models will
be tested through actual analysis of the ozone data.

The rest of the paper is organized as follows. Section 2 introduces some recent reports on
ozone. Section 3 describes the ozone data we are going to analyze. In Section 4, we review
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and develop several statistical models in threshold methodology. Section 5 explains a detailed
statistical procedure for applying the models discussed in Section 4 to the ozone data. The
actual data analysis is performed in Section 6. Section 7 gives estimated exceedance
probabilities as well as estimated 100-year return levels. Section 8 contains summary and
final comments.

2. Some recent reports on ozone

Ground-level ozone is produced by complex chemical reactions driven by solar radiation as
a result of the emissions of hydrocarbons and nitrogen oxides into the atmosphere. As a
measure of air pollution, ozone is one of the current important issues of considerable
environmental concern. The governmental standard is generally specified in terms of
percentiles of the distribution of ozone concentrations. For instance, the U.S. air pollution
standard specifies that the number of exceedances by daily ozone maxima of the level of 120
ppb (parts per billion) should not exceed 3 in any 3-year period. The regions which violate
this are usually in major cities such as New York, Chicago, Houston and Los Angeles.

There have been a number of ozone studies during this decade. Out of the several recent
reports on ozone, we briefly pay attention to the following four papers. First of all, Smith
(1989) analyzed the ozone data collected in Houston for 14 years from 1973 to 1986, using the
clustering method where the cluster maxima of exceedances are assumed to happen according
to a Poisson process and excesses are assumed to follow the generalized Pareto distribution.
Here, the year variable was considered as a covariate to examine whether there is a
long-term trend in the data. On the other hand, a nonlinear regression technique was used
by Graf-Jaccottet (1993) to analyze the average daily ozone concentrations collected in
Switzerland for 2 years during 1988 and 1989, who adopted a Box-Cox transformation to take
the nonnormality of the data into account. It is noteworthy, here, that the number of hours
between sunrise and sunset was introduced as a covariate to model the short-term annual
trend. As part of a project carried out at the NISS (National Institute of Statistical Sciences)
under a cooperative agreement with the U.S. EPA (Environmental Protection Agency),
Bloomfield, Royle and Yang (1993) also developed a nonlinear regression model fitted to
weighted averages of ozone concentrations in the Chicago area for 11 years from 1981 to
1991. They used several measured meteorological variables as possible covariates. This data
set was again used by Smith and Huang (1993), as part of that project also, where they
made an attempt to fit extremal data by a (first order) Markov chain. Here, the
meteorological variables were also used as covariates.

The ozone data we are going to analyze is the same data set that was used by Bloomfield
et al. (1993) and Smith and Huang (1993). Since we are interested in characterizing what is
going on in the tail (or extremes) of the distribution of ozone as the current ozone standard is
defined in terms of extremes, we avoid using regression approaches which do not give enough
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attention to the extremes of the data. We follow, instead, the threshold methodology, as
Smith (1989) and Smith and Huang (1993) did, which is accepted as an appropriate technique
to capture the tail behavior of ozone. The major concern here is to model the joint
distribution of the tails of the given data series using a higher order Markov chain. This is
achieved by assuming the domain of attraction of a multivariate extreme value distribution.
On the other hand, to simplify the analysis, we do not use explicitly the meteorological
variables (such as temperature, wind speed, humidity and so on) as covariates although these
are available in the data set. As possible covariates, we use instead the length of the day,
the number of hours between sunrise and sunset, to model the short-term annual trend (the
seasonal effect) as Graf-Jaccottet (1993) did, and the year itself to examine the long-term
trend. This is reasonable since the ozone is produced by chemical reactions driven by solar
radiation and so believed to depend on the length of the day. Removing the meteorological
covariates from the analysis is particularly useful for the purpose of prediction since
meteorological conditions cannot be controlied.

3. The ozone data

The ozone data consist of hourly readings at 45 stations in the Chicago area, collected for
11 years from 1981 to 1991. Detailed description of the stations and their locations is
available in Bloomfield et al. (1993). Since we are interested in the tail behavior of ozone, our
detailed analysis is concentrated on the three stations, denoted by P, Q and R respectively,
with the highest ozone levels. From now on, we therefore focus on three time series of daily
ozone maxima from these stations. In addition to these, we also analyze the daily maxima
for the whole network, which is referred to as F (or network maxima). These four data
series are exactly the same as Smith and Huang (1993) used for their detailed analysis.

Table 1 shows some information about these stations, number of observations, number of
missing observations due to the measuring equipment being out of service, and the number of
exceedances of the daily maxima over the levels 995 and 1195 ppb. Since the U.S. current

Table 1: Numbers of observations and exceedances by station

P Q R F
station ID 170317002 170971002 181270024 -
latitude 42.1° 42.4° 41.6° 41.8°
no.of nominal obs. 3,956 3,956 2,757 3,866
no.of actual obs. 3,392 3,211 1,053 2,354
no.of missing obs. 564 745 1,704 1,512
~no.of exc.over 99.5 94 84 55 321
no.of exc.over 119.5 41 38 23 143
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standard is based on 120 ppb, this will be the starting threshold of major concern. The
equipment measuring ozone, however, can only measure to the nearest ppb, which means that
the actual ozone could be anything between 1195 and 1205 if 120 ppb, for example, were
measured. Taking this measurement error into account, we start with threshold 119.5 instead
of 120, which has an effect of counting 120 as an exceedance. For stations P, Q and R
however, the numbers of exceedances over threshold 1195 are not, as seen in Table 1,
believed to be satisfactorily enough for a good fit particularly when complicated models are
dealt with. We therefore confine ourselves to only threshold 99.5 for stations P, Q and R, but
work with threshold 119.5 for network maxima (F). As introduced before, one of our main
covariates is the length of the day, and this can be calculated approximately using the latitude
of each station. The explicit formula for this will be given later. For this purpose, the
latitude for F should be specified. We use 41.8° , the average latitude of all the 45 stations,
for the latitude of network maxima. The number of nominal observations in Table 1
represents the number of days between the first and the last observations of each station.
For station R, the observations are almost missing for the first 3 years, for the last year, and
for the periods, November~March, of the remaining years. For network maxima, the data are
not available either for the period, November ~March, of every year.

4. Statistical models in threshold methodology

This section reviews and develops several statistical models in threshold methodology which
will be adopted in Section 6 for detailed analysis of the ozone data of each station. The
actual statistical estimation procedure is then based on the numerical maximum likelihoods
using these models. Major concerns are to model the dependence of extreme values by
building up an appropriate model for the joint distribution of the tails of a given time series,
detect any possible trend in the extreme values, and predict (or estimate) percentiles such as
100-year return levels using the fitted model. For a somewhat complete analysis of extremes,
the statistical analysis will be separated into several steps. The fist step is to consider the
exceedance probability of a high threshold. The next is to apply the usual threshold method
to exceedances over the threshold, that is, fit the generalized Pareto distribution to excesses.
These two steps are then combined to be considered simultaneously by defining truncated
variables. Finally, serial dependence is allowed for in the analysis and the tails of a given
time series are modeled by a k-th order Markov chain (k=1). Throughout the remaining part
of the paper, let {X;} denote a given time series of daily ozone maxima of a station, and let u
be a fixed high threshold which is either 99.5 or 1195 in our case. To give a step—by-step
motivation for our final model, we start with a simple situation and assume, for the time
being, that the observations (daily ozone maxima) are independent of each other.
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Exceedance probability of a high threshold

As an initial step, suppose we are interested in modeling the probability of exceedance, as a
function of covariates, of the threshold u on each day t. If we consider the indicator variable
Z=I(X>u), then the exceedance probability of u is given by p=P(Z=1)=P(X:>u), which is to
be estimated. A popular model for p; is the logit model:

b \_
log ( = )— ZS‘.xK[J’S, 4.1
where xi is the s-th covariate on day ¢t and Bs is the corresponding coefficient. The
covariates we are going to use for detailed analysis are given in the following section. Under
the independence assumption, the likelihood for {Z:} will be

L=1't[{ b KZ=1)+1—-p) - LZ,=0)). (42)

Since {Z:} is a two-state (0 and 1) series, one may easily allow for local dependence between
variables by considering it as a higher order two-state Markov chain. This chain, however,
does not explain anything about the distribution of the excesses which is one of our major
concerns, and therefore we do not pursue this binary Markov chain model here.

Excesses over a high threshold

To see what is happening in the extremes of the data, it is of direct interest to characterize
the distribution of excesses over the threshold u. A standard model for this is the
generalized Pareto distribution (henceforth GPD) defined by (1.2). This is based on the fact
that if a sequence of iid. random variables is given in which their common distribution
function is assumed to belong to the domain of attraction of some univariate extreme value
distribution, then the excesses over the threshold u follow approximately the GPD. In our
case, we extend this to include covariates like:

~1/&
+

where

log ¢,= stmts. £,=¢.

Here, x:s is the s-th covariate on day ¢t and ¢ is the corresponding coefficient. Since the
parameter 4. is necessarily positive, the logarithmic link function may be adequate. In our
analysis, we confine ourselves to the constant &,=& for the analysis to be simpler, which is
not however necessary in general. Finally, if the excesses over the threshold u are observed

on days fuf,.. and if the corresponding excesses are denoted by Y,.Y,,..., then their
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likelihood will be approximated by

—1/51,'1

. i Et,Yt,
L—I-r[[ ¢r,(1+ o ) ] (4.4)

under the independence assumption of the original data.

Combining excesses with exceedance probability

Though the previous two models can be applied separately to exceedance probability and
excesses, these may be combined through a single rich model to be considered simultaneously.
Specifically, from (4.3), one may get

-1/,
i’f ) , ¥y=0,
+

P(X,Su+y)z1—p,(1+

or equivalently,

Elx—u) )

P(X,Sx)zl—m{1+ ) } , X2u,
4 +

where p=P(X:>u). Further, the second formula may be rewritten as

—1/&

PX,<x)~1 —{1+—‘5-‘(—"5_t—‘i‘l} . x>u, (45)
+

where 6,= ¢p;'>0 and /u,=u—0,(p,_£'—l)/ &;<u. Here, the exceedance probability is, of

course, given by
-1/&

p,=[1+ Elu—p) ]

0,

If the threshold u is chosen sufficiently high so that p: becomes very small, then
approximation (4.5), by virtue of the Taylor expansion of order 1, may be replaced by

_1/61

P(X,sx)zexp[ —{1+i'(i(;t—#i]+ ] , X=u, (4.6)

where the condition #.<u is no longer necessary here. Notice that the right hand side of
(4.6) is nothing but the tail of the generalized extreme value distribution (henceforth GEV).
This is not surprising since the GPD model (4.3) for excesses is based on the assumption
that the distribution function of X: belongs to the domain of attraction of some extreme value
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distribution. Roughly speaking, relations (4.5) and (4.6) therefore imply that taking GPD for
the excess is the same in effect as taking GEV for the tail, provided that the threshold u is
chosen sufficiently high.

Models (4.5) and (4.6) are referred to as generalized Pareto tail (henceforth GPT) model and
generalized extreme value tail (henceforth GEVT) model respectively. When the GPT model
is quoted, we will adopt the following covariate structure as

log(u—p)= Zslxm. log 0,= Zslst, £=§ 47

when the GEVT model is used, the following covariate structure will be substituted:

M= zsxtxas, log 0,= stm’h’ E=E. (4.8

Since model (45) is valid only for x=>u and does not give any information about the
remaining part of the distribution of X, it is impossible to calculate the likelihood for {X;).
Instead, if we define a truncated variable like Z=X, I(X;>u)+u-I{X;<u) which has all the
information about the tail of X, then the right hand side of (45) is a valid model for the
distribution function of Z, which has a jump at the threshold u and is absolutely continuous
thereafter. Therefore, the approximate likelihood for {Z;} will be

_ _I/El"l
1+ M]  KZ> ) (49)

- —p). — 1
L=TI| (1-p)- KZ=w)+ at[ =
under the independence assumption. Similarly, one may apply this idea to model (4.6) to find
out the corresponding approximate likelihood for {Z;}, which is omitted here.

Higher order Markov chain models for the tails of {X.}

So far, all the previous models assume the independence of observations. Since the
truncated variable Z=X:-I(X>u)+u-I(X;<u) has all the necessary information about the tail of
X, we also work with this {Z} as before. One of natural ways of allowing for local
dependence of variables is to impose Markov property on the series {Z,). Henceforth, {Z;} is
assumed to be a k-th order Markov chain for some k=1. That is, Z is assumed to depend
on only the k immediate past values Zi«,..,Z-1. For the marginals, we take model (4.5) as
the distribution function of Z, or equivalently, as the tail of the distribution function of X
which is, of course, based on the previous arguments. One may take instead model (4.6), but
the detailed procedure for this is similar to that for model (4.5) and so omitted here. Now,
assuming (4.5) is the exact tail of the distribution function of X. consider the standardized

variable (in some sense) X, defined by
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X,=—é1-;log {1+M}+.

0

which is, of course, interpreted as X,=(X,—u,)/a, if £~0. Then X, has obviously the

standard exponential tail, i.e,,

KX <x)=1-e" xZ—é—tlog{l+——€'(u;ﬂ') }+>0.

At this stage, we need a kind of stationarity assumption of the tails of the transformed
series { X}, which is eventually helpful for characterizing the whole distribution of the chain

{Z:}. Although not necessary, we now assume that { ¢ ¢ itself is strictly stationary to make

the argument simple. Since the distribution of the chain {Z;} is completely determined by the
joint distribution functions of all the k+1 successive variables Z:Z1,....2+« and hence by the

joint distribution functions of all the k+1 successive variables X:, X;i1,..., Xs+z under

model (4.5) for the marginal tails, it is a key step to find out an appropriate model for the
joint distribution function F g1 Of ( X:,....X t+4). By analogy with the univariate case

deriving model (45), this can be resolved naturally by assuming F.; belongs to the domain
of attraction of some (k+1)-dim. extreme value distribution G,+;. We here note that F'yy,
has the same tails of marginals which are standard exponential so that Ckﬂ must have the

equal marginals A(x) = exp(—e ¥), the standard Gumbel distribution. By considering that

A(x)=~1—e " for large x and that G4, has the same tail behavior as F'4;, our suggestion

is to use the tails of Ckﬂ as an approximation for the tails of F* b+1, LE.,

Fk+1 (X1yee s Xpr )= ak+1 (%1, ... %))

= C142+1(_ log( - log(l —e _xl)), ey — log( — log (1 —e "xnl)))

for large xi,...,xx+1. Returmning back to the original series {X:}, the tail of the joint distribution
function F ,521 of (Xi,..,Xx) may be, therefore, approximated by

FO(xy, .00 %p01)= P(X:<xp,.... X 1S%et1)
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~1/&

za,m(—mg(—mg(l—{Hi"‘i‘"—')}+ ).

3

Otk

-1og(—1og(1— {1 L e —pnd) ];“"‘)))

X1y oees Xpp12 U, (4.10)

Our derivation for model (4.10) is somewhat heuristic. Those who need more rigorous details
are referred to Smith, Tawn and Coles (1993) and Smith (1993). If one starts with model
(4.6) for the tail of the distribution function of X: one may get the following approximation:

F;?-l(xl 9y secy xk+l) = P(X[le, eeey Xt+kak+1)
0;

~ Ckﬂ(?lt log{l+M}+,

1 log{1+ 5:+k(xk+1—#r+k)} ), Yo K>, (411)
Erve Otk +

Once we have model (4.10) or model (4.11) for the tails of {X:}, these can be used as valid
models for the distribution of the truncated series {Z:;}. In other words, model (4.10) (or
model (4.11)) may be considered as an approximation for the proper joint distribution function
of (Z.....Zux), which has, of course, discrete components in it. Finally, the whole likelihood for
{Z:} of sample size n, based on the assumption of Markov structure of {Z.}, is easily
calculated as

n—k
0 Lui(Z,, ... 200

L=-=% , (4.12)
t]._;Isz(Zt: cerZiper)

where
Lk+1(Ztl ""Zt+k)=F£g)'].(u7 oo 0y u) * I(Zt= u’ “"Zt+k=u)

aluFéfl)-l(Ztv ---;Zf+k)
Dt h 11 0z;
D= €D

- I(Z,> u, iED,Zj= u, jEDC)

and Li(Z,,...Zvk-1) being defined similarly using the k-dim. distribution function F. ;t) of

(X4,....Xex-1).  For the covariates, we shall use the same structures as (4.7) and (4.8) for
models (4.10) and (4.11) respectively.
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Since the order k of the chain {Z} and the (k+1)-dim. extreme value distribution G4, in

the above methods are not specified explicitly, some criteria for model selections are needed
when the methods are applied to real time series data. If considered models are nested, one
may use the standard procedures such as the likelihood ratio test and the t ratio test. The
models we use, however, are typically not nested, in which case one may use alternatively the
usual time series procedures such as AIC and BIC suggested by Akaike (1974) and Schwarz
(1978) respectively. For the context of Markov chains, Tong (1975) and Katz (1981) proposed
the use of AIC and BIC procedures respectively to select the order of a chain. In regard to

G+1, our detailed analysis is confined to only the logistic model defined by

B
Ck+1(x1..--.xk+1)=eXD{“(si=:le )} X1, e X+ 1€ R,

where 0< @ <1. This model was used by several statisticians (e.g., see Tawn (1988) and
Smith (1992)) as a basic model for multivariate extreme value distributions because of its
simple structure yet to have a full flexibility of controlling any dependence of variables.
Applying this to (4.10) and (4.11), we therefore get approximations, respectively,

F2.(x0, ..., Xer )™ exp{—[ (—log(l—{1+—é—-'—(—£l—_—£—')—}:l/&))w+---

O;
— — Ereil(Xis1—Hesd) T lla] a}
e e A N
Xly oo Xpe 12U (4.13)
and
—1/(e8)
x—
Fﬁ');l(xl,...,xul)zexp{—[ {1+i—‘5—ﬂ)—] +eee
t +
—1/(et11)

, yeous >u, (414
Oren ] } X Xp2u. (4.14)

+{1+ Ervi(Xer1— B4 d) }

5. Statistical procedure

This section describes a detailed statistical procedure for applying the various models
discussed in Section 4 to the ozone data. As mentioned before, the covariates we are
interested in involve the length of the day and the year. To explain the procedure explicitly,
let any day t be expressed as a pair (ij), where i is the corresponding year and j is the
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corresponding day number within that year. That is, for example, t=(1981,1) for Jan. 1, 1981,
and ¢=(1991,365) for Dec. 31, 1991. Then, from Graf-Jaccottet (1993), for a day number J, the
corresponding length of the day (number of hours between sunrise and sunset) at any station
is approximately given by

1,=12.m+—2”i(1+T;25—)mcsm(tmeo- tandy - sin {20 (i-80)}),

where 0, =23.45° (inclination of the Earth) and §,=Ilatitude of the station. Since the

covariates are expressed in terms of x;s in every model discussed in Section 4 , it is sufficient
to specify only x; in order to explain our concrete covariate structure of each model. From
now on, we adopt the covariates x;s as: for any day t=(i), define

x9=1, xqa=10~12, x,=1—1980, xg=(;i—1980)2,

and x;s=0 for s=4. In terms of words, xo explains a constant, xa a short-term annual trend,
Xz a long-term linear trend, and xs a long-term quadratic trend. Therefore, for instance, the
logit model (4.1) becomes

tog (T242—) = Bu-+ (1, ~12)8:+ (i=1980) B+ (i~ 1980)°By,
which has 4 parameters to be estimated. Similarly, the interpretation of all the other models
in Section 4 is straightforward.

With the given covariate structure, the actual parameter estimation procedure is through the
numerical maximumn likelihood, that is, we choose the parameter estimates so as to maximize
the likelihood function L defined in Section 4 for each model. For this, we here use Fortran
programs employing the DFPMIN (Davidon-Fletcher-Powell variable metric function
minimization) algorithm of Press, Flannery, Teukolsky and Vetterling (1986) to minimize the
negative log likelihood -logL. Hereafter, the minimized negative log likelihood is referred to
as NLLH. In addition to the maximum likelihood estimates, the programs we use here also
produce the Hessian matrix of NLLH, the observed information matrix, the inverse of which
is generally used as an approximation to the variance-covariance matrix of the parameter
estimates. In particular, the square roots of the diagonal entries of the inverse of the Hessian
matrix give approximate standard errors for the parameter estimates.

Missing data do not give rise to a problem under independent models for computing NLLH.
For dependent models such as the higher order Markov chains, however, it is often a problem.
In our case, we handle this by restarting the considered chain whenever there arises a
missing observation. This has an effect of separating the whole chain into a number of
independent subchains, where the error of the resulting NLLH is hopefully minor.

One final issue is how to discriminate which variables (covariates) are really significant
when a specific full model is considered. For example, the GPT model (45) has, in fact, 9
parameters in total under our covariate structure, and some of these may be really significant
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whereas the others may not. A standard method for handling this is a stepwise selection in
which the variables are introduced one at a time and the corresponding NLLH is computed.
As a rule of thumb, a variable is considered significant if its inclusion in the model reduces
the NLLH by more than 2. This is based on the approximate x{ distribution for the deviance
statistic, twice the difference of NLLHs for the two models being compared. Ancther widely
used measure for the test of significance is the ¢ ratio which is defined by the value of the
parameter estimate divided by its standard error. A suitable rule of thumb, here, 1s that any
variable with a ¢ ratio greater than 2 in absolute value is considered significant. This is
based on the asymptotic normality of the maximum likelihood estimates, which is the case
whenever £> —0.5 (see Smith (1985)). We however recall that the standard errors computed
by the programs are only approximate. In our detailed analysis of Section 6, we therefore
consult both of the above criteria for the test of significance.

6. The data analysis

We now analyze the daily ozone maxima for stations P, Q, R and F (network maxima),
using the various models discussed in Section 4. As mentioned before, we concentrate on the
threshold u=99.5 for stations P, Q and R, and the threshold ©=119.5 for network maxima.

Exceedance probability of a high threshold

We fit the logit model (4.1) to estimate the exceedance probability of u. For station P, an
initial analysis is made using only 8¢, which results in NLLH=429.76; adding #: to the model
gives NLLH=354.06 with the corresponding ¢ ratio=7.75, which means £, is significant; adding
B2 to the model results in NLLH=353.99 with the corresponding ¢ ratio=—0.37,which means A3
is not significant so that the analysis is stopped here. In other words, the long-term trend is
not detected for station P. For stations Q and R, the same thing happens and the model
containing only B¢ and A1 turns out to be optimal. For network maxima, however, the initial
model gives NLLH=539.11 and the resulting NLLHs by adding #i, A2 and A3 successively
are 487.49, 485.36 and 480.25, where the corresponding ¢ ratios turn out to be 6.92, 2.07 and
-3.40 respectively. This implies that the long-term quadratic trend should be taken into
account significantly for network maxima. The optimal models caught by our analysis are
summarized in Table 2. Each entry in the table represents the corresponding parameter
estimate together with its standard error in parenthesis. The resulting NLLHs are also
shown in Table 2. In network maxima, the negative value of the estimate of A3 indicates
that the long—term trend is eventually downward.

Excesses over_a high threshold
For the excesses over a high threshold, we now fit the GPD model (4.3). For station P, an
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Table 2: Parameter estimates in logit model

P Q R F
Bo -5.20(0.32) -5.20(0.32) -5.43(0.61) -5.29(0.42)
B1 0.93(0.12) 0.89(0.11) 1.12(0.21) 0.90(0.11)
B2 0.34(0.12)
B3 -0.034(0.010)
NLLH 354. 06 323.92 186.17 480.25

initial analysis with € and ¢o produces NLLH=388.40, where the t ratios of & and ¢, are
0.74 and 16.23 respectively; adding &1 and ¢z successively to the model results in
NLLH=386.13, 386.13 respectively with the corresponding ¢ ratio=2.28, 0.54, which implies that
¢1 is significant but ¢z is not. Also, the ¢ ratio=0.74 of & in the initial analysis raises a
question of £=0. To test this, we put £=0 (ie, &£—0) in model (4.3) with ¢o and ¢;
included, which leads to an exponential distribution for the excesses, and recompute the
corresponding likelihood to obtain NLLH=386.16. Comparing this with the former
NLLH=386.13, we therefore conclude £=0 for station P. For a further investigation on this
and for a goodness-of-fit of the fitted model, residual plots will be given later with
discussion. For station Q, £=0 is rejected by both of the criteria (NLLH and ¢ ratio), but for
station R, £=0 is not. For network maxima, the two criteria lead to different suggestions:
the NLLH suggests the acceptance of £ =0, whereas the t ratio suggests the rejection of & =0,
Based on the residual plot which will be given later, we here reject £ =0 for network maxima.
The length of the day turns out to be significant for only P and F. Our further analysis
shows that there is no evidence of the long-term trend at any station. Table 3 shows the
optimal model selected at each station. In the table, £=0 means that an exponential

Table 3: Parameter estimates in GPD model

P Q R F
& 0 -0.22(0.12) 0 -0.14(0.084)
$o 2.04(0.46) 3.34(0.16) 3.02(0.14) 2.17(0.34)
£1 0.40(0.17) 0.35(0.12)
NLLH 386.16 346. 47 221.31 568. 73

distribution (ie, £—0 in the GPD model (4.3)) is fitted for the excesses. As before, the
parenthesis in the table shows the standard error of the corresponding parameter estimate, and
this convention will be adopted throughout this section.

To check the fit of the model, we define a residual Y, / 3,, with respect to the r—th excess

Y, on day t and the associated parameter estimate 3,,. The residuals are then arranged in

order and plotted against the corresponding expected values under each of the two models
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(exponential distribution and GPD). If the model fits the data, then the residuals should be
tightly clustered around a straight line of 45° slope through the origin. Figure 1 shows the
resulting residual plot for each station. For stations P and R, the GPD does not seem to
improve the overall fit, compared with the exponential distribution, and this may justify the
failure of rejecting £=0. For stations Q and F however, the GPD clearly gives a better fit,
particularly in the upper tail, which justifies the rejection of & =0.

Combining excesses with exceedance probability

We now combine the previous two models (logit model (4.1) and GPD model (4.3)) to
handle the exceedance probability and the excesses simultaneously. First, consider the GPT
model (4.5) with the covariate structure (4.7). After a process of stepwise selection of
variables as before, we obtain the optimal models as in Table 4. The residual plots of

Table 4: Parameter estimates in GPD model

P Q R F
& 0 -0.30(0.089) 0 -0.15(0.083)
70 3.76(0.50) 5.30(0.20) 4.72(0.19) 4.25(0.42)
71 0.13(0.18) -0.15(0.035) -0.30(0.051) 0.019(0.13)
72 -0.091(0.040)
73 0.0092(0. 0033)
70 2.04(0.49) 4.26(0.37) 3.02(0.14) 2.80(0.51)
71 0.40(0.18) 0.25(0.13)
NLLH 737.13 665. 00 409.13 1047.44

excesses, which are omitted here, are also considered to select these optimal models. For
stations P and R, the GPT does not give a considerable improvement on the exponential tail
(£=0 in model (45)) so that £=0 is not rejected. The length of the day turns out to be
significant in the location parameter u. for all stations, but significant in the scale parameter
o: for only P and network maxima. For network maxima, the long-term quadratic trend is
detected in the location parameter and the positive sign of the estimate of 73 implies that the
trend is eventually downward. Another interesting thing is that for stations P and R, the
estimates of 7's agree with those of ¢’s in Table 3 though they are based on different
likelihood functions. This is, however, not surprising because o=@, in model (4.5) when & =0.
All the other things do also well agree with the previous two models (4.1) and (4.3).
Therefore, the GPT model (45) can be used as a single (but rich) unified model if one is
interested in both the exceedance probability and the excesses.

Theoretically, the GEVT model (4.6) has the same tail behavior as the GPT model (45) as
long as the threshold u is chosen sufficiently high. In practice, however, they may lead to
slightly different fits because of the level of the threshold u which is usually not so high.
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Figure 1: Residual plot

under GPD model
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Recall that an extremely high threshold tends to cause an insufficient number of exceedances,
which may induce a bad fit. One advantage of using model (4.6) is no necessity of the
constraint u#.<u. We now apply the GEVT model (4.6) and obtain the optimal models in
Table 5. For each station, the selected variables are exactly the same as in Table 4, but the

Table 5: Parameter estimates in GEVT model

P Q R F

& 0 -0.31(0.042) 0 -0.12(0.072)
8o 45.89(1.79) -96.28(1.81) -8.86(0.47) 52.02(1.90)
31 -2.00(2.54) 22.11(3.75) 21.85(1.23) 0.12(4.81)
82 6.13(1.50)
83 -0.63(0.14)
70 2.26(0.088) 4.29(0.14) 3.00(0.15) 2.68(0.18)
71 0.31(0.051) 0.25(0.054)
NLLH 737.27 666. 37 407.46 1047.46

estimates of € and 7’'s are slightly changed. In the Table 5 £=0 (ie, £-—0 in model
(4.6)) corresponds to a Gumbel tail. For station P and network maxima, the difference of two
NLLHs from Tables 4 and 5 is minor. For stations Q and R, however, the difference is
somewhat bigger, which perhaps results from the smaller number of exceedances. The
residual plots of excesses, which are also omitted here, show shapes similar to those for
model (45). This suggests that there is no big difference, in practice too, between using
model (4.5) and using model (4.6), provided that the threshold u is taken reasonably high.

Higher order Markov chain models for the tails of {X;}

Although model (45) (or model (4.6)) explains both the exceedance probability and the
excesses very well, it still does not take into account the serial dependence of variables which
usually exists in various environmental data. We now apply the k-th order Markov chain
model discussed in Section 4 to the tails of the daily ozone maxima. Our detailed analysis is
concentrated on models (4.13) and (4.14) which are based on the logistic multivariate extreme
value distribution. The method can, however, be applied to various multivariate extreme value
distributions.

First of all, we consider k=1 (ie., first order Markov chain). Fitting model (4.13) with k=1
produces the optimal model for each station as in Table 6. Since this first order Markov
chain model is an extension of the independent GPT model (4.5) (i.e., model (4.13) contains
model (4.5) as a special case), we compare the selected optimal models of Table 6 with those
of Table 4 to investigate any improvement by the first order Markov chain. For each station,
as seen in Table 6, the estimate of @, which is a measure of dependence of variables (a=1
corresponds to independence, which reduces model (4.13) to model (45), and @ =0 corresponds
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Table 6: Parameter estimates in first order Markov chain model for GPT

P Q R F
a 0.76(0.034) 0.79(0.045) 0.82(0.052) 0.80(0.035)
E 0 -0.22(0.090) 0 -0.16(0.024)
70 4.84(0.46) 5.24(0.20) 4.65(0.079) 4.73(0.031)
71 -0.26(0.014) -0.17(0.028) -0.28(0.043) -0.21(0.021)
72 0.019(0. 0087)
70 3.16(0.35) 4.05(0.36) 3.00(0.11) 3.60(0.016)
NLLH 697.12 641.21 394.53 1011.74

to a very strong dependence), turns out to be about 0.79 with a standard error of about 0.04.
This suggests that the data of daily ozone maxima clearly have a serial dependence which is
not so strong though. Comparing the corresponding NLLHs gives a more clear explanation
for the existence of serial dependence. The difference between two NLLHs from Tables 4
and 6 varies from 14.6 to 40.01 according to the stations. Taking into account the parameters
being rejected due to their insignificancy in Table 6, the difference will be bigger. In fact,
when we fit model (4.13) using exactly the same parameters (&,70,71,72 73 70 and 71) as
in Table 4, the resulting NLLHs turn out to be 696.32 and 1010.20 for station P and network
maxima respectively. Based on the likelihood ratio test and even the AIC criterion proposed
by Tong (1975), this big drop of NLLH strongly suggests that @<l and hence k=1 in our
Markov chain context should be accepted against the null hypothesis a =1, or equivalently, the
null hypothesis k=0.

Let us look at Table 6 more closely. For stations P and R, the exponential tail ( £=0) is
not rejected; in other words, the GPT shows no significant improvement on the exponential
tail, which agrees with Table 4. For the long-term trend in the location parameter of
network maxima, not a quadratic trend but a linear downward trend turns out to be detected,
which does not agree with the results in Table 4 Moreover, the length of the day is no
longer significant in the scale parameter at any station, which is not the case in Table 4.
The dependent model (4.13) need not, in general, detect exactly the same variables as the
independent model (4.5). The inharmonious results of Tables 4 and 6 are not, however, fully
understandable to analysts.

Now we fit model (4.14) with k=1, the first order Markov chain model having the GEVT as
its marginal tails. The resulting optimal models are summarized in Table 7. Here, the
estimate of ¢ turns out to be about 0.80 with a standard error of about 0.06, which is very
similar to that of Table 6. The big difference between two NLLHs from Tables 5 and 7,
also, justifies the acceptance of the hypothesis @ <1 and hence the hypothesis k=1. For
stations P and R, the Gumbel tail (£ =0) is not rejected against the GEVT. Above all things,
the selected variables of Table 7 are consistent with those of Table 5. That is, for network
maxima, a quadratic downward trend is detected, and for station P and network maxima, the
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Table 7: Parameter estimates in first order Markov chain model for GEVT

P Q R F

a 0.76(0.064) 0.79(0.047) 0.83(0.076) 0.81(0.038)
é 0 -0.24(0.048) 0 -0.13(0.071)
8o 33.81(0.80) -85.44(7.73) -3.01(2.08) 34.53(1.28)
81 1.57(1.99) 23.48(4.78) 20.03(1.97) 6.64(2.96)
82 3.98(1.18)
83 -0.46(0. 085)
70 2.50(0.15) 4.10(0.15) 2.97(0.080) 3.10(0.24)
71 0.24(0.036) 0.13(0.026)
NLLH 696. 34 642.36 393. 42 1009. 88

length of the day in the scale parameter turns out to be significant. Considering that the
dependent model (4.14) is an extension of the independent model (4.6), this harmony is
desirable in comparing and interpreting the two models. It is recalled that this harmony is
not found between model (4.5) and its extension model (4.13).

The residual plots of excesses, which are omitted here, are also studied under the first
order Markov chain models (4.13) and (4.14) for GPT and GEVT respectively. The overall
patterns are similar to those of Figure 1. The plots support the GPT (or GEVT) for station
Q and network maxima, but do not for stations P and R.

Since the first order Markov chain models (models (4.13) and (4.14) with k=1) improve the
likelihood a lot on the independent models (4.5) and (4.6), the next thing is to consider k=2
(ie., second order Markov chain). The resulting NLLHs of the optimal models selected by
fitting model (4.13) with k=2 turn out to be 706.61, 652.24, 398.31 and 1023.07 for stations P,
Q, R and F respectively. The corresponding NLLHs for model (4.14) with k=2 are 704.99,
653.17, 397.02 and 1022.97. These NLLHs are clearly greater than those in the first order
Markov chain models, even though they are still less than those in the independent models.
Based on the likelihood ratio test, we may therefore say that the second order Markov chain
models are a significant improvement on the independent models, but not on the first order
Markov chain models. Hence, a higher k (k23) is not tried and we finish the detailed
analysis here.

Finally, we note that the higher order Markov chain models (4.13) and (4.14), which are
based on the logistic multivariate extreme value distribution, are not nested with the change
of the order k. This is why the NLLHs in the second order Markov chain models could be
greater than those in the first order Markov chain models. Since our higher order Markov
chain models highly depend on which model for the multivariate extreme value distribution is
chosen, one may resolve this and be successful in finding a better fit with a higher order k
by developing and applying an appropriate model for the multivariate extreme value
distribution,
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7. Exceedance probabilities and return levels

In Section 6 it is shown that the GPT model (45) or the GEVT model (46), as a natural
model combining the excesses with the exceedance probability, gives a satisfactory fit of the
daily ozone maxima under the independence assumption of the data. It is also shown in
Section 6 that the first order Markov chain models (models (4.13) and (4.14) with k=1), as
extensions of the independent models, significantly improve the overall fit of the ozone data.
The fitted models are then used to estimate the exceedance probabilities of the threshold u as
well as the various return levels. In this section we concentrate on the GEVT model (4.6)
and its extension model (4.14) with k=1 because they show a consistency in detecting
covariates. The corresponding results of the fitted models are given in Table 5 and Table 7
respectively.

First of all, from models (4.6) and (4.14), the exceedance probability of the threshold u on
day t is given by

-lé,

l—exp[ _[1+___€,(u(;u,)}+ ] .

Replacing the parameters by the corresponding estimates in Table 5 (or Table 7) through the
covariate structure (4.8) gives an estimated exceedance probability whose plot is shown in
Figure 2. Since the long-term trend is not detected for stations P, Q and R, only one-year
period is shown in the figure for these stations. For network maxima having the long-term
quadratic trend in the location parameter, the whole period (1981~1991) is shown in the
figure. The day in the figure is started from Jan. 1, 1981 (ie., 1 for Jan. 1, 1981,..., 4015 for
Dec. 31, 1991). In the figure, GUMT represents the Gumbel tail (ie., &€=0 in model (4.6)) and
MCI1 represents the first order Markov chain model (ie., model (4.14) with k=1). Since the
programs used here for minimizing the negative log likelihood also produce the observed
information matrix, it is possible to construct an approximate confidence interval for the
exceedance probability on each day via the standard delta method, which is not given here.
It is also noted that the exceedance probability is based on the marginals only so that the
dependence parameter ¢ in model (4.14) does not play an important role in Figure 2. The
first order Markov chain model can, however, be used effectively to estimate some quantities
which need a dependence structure between variables. For instance, one may easily compute
an estimate of the probability of exceedance on day t+1 given the exceedance on day ¢ or the
probability of consecutive exceedances on two days.

Return levels are defined by percentiles of the marginal distribution on each day. From
models (4.6) and (4.14), the 100(1-p)th percentile (0<p<1) on day ¢ is therefore given by

#:'*‘“'g—i[ (—log(1—p)) -1 ,
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which is valid whenever it is not less than the threshold u. This is because models (4.6) and
(4.14) are valid only for x>u. Figure 3 shows the corresponding estimated 99th percentile
(100-year return level) on each day together with the original data of daily ozone maxima.
Again, one may use the delta method to compute an approximate confidence interval for the
return level on each day, which is not shown here.

8. Conclusions and summary

In our ozone study, we have analyzed the time series of daily ozone maxima collected in
the Chicago area for 11 years. The main purpose of this study is to examine what is
happening in the tails (or extremes) of the series. For this purpose, the detailed analysis has
been concentrated on three stations, labeled P, Q and R, with the highest ozone levels, and
also the network maxima.

The overall methodology adopted here for a datailed analysis is the threshold technology.
Starting from the logit model for the binary data of exceedances, we have extended the
classical threshold method to higher order Markov chain models for the tails of the series to
take the serial dependence of the data into account. For the tails of the marginals, the GPT
model (45) and the GEVT model (46) turn out to give similar performances under the
independence assumption of the data. For higher order Markov chain models, however, only
model (4.14) having the GEVT as its marginal tails gave a consistency with the independence
model (4.6) in detecting covariates.

The length of the day was used as one of the main covariates and turns out to explain
quite well the short-term annual trend. For the long-term trend, the three stations P, Q and
R did not show any trend, but a quadratic downward trend was found in network maxima.
This downward trend may indicate the success of EPA’s efforts to reduce the highest ozone
levels over the last 15 years.

For each station, the first order Markov chain model (model (4.13) or model (4.14) with
k=1) turns out to be a significant improvement on the independent model (model (4.5) or
model (46)). For network maxima, our impression from the data analysis indicates that even
a higher order might be adequate. This is not, however, verified since the higher order
Markov chain model we applied for a detailed analysis is based on the logistic multivariate
extreme value distribution so that the corresponding chain is not nested with the change of
the order. To resolve this, it is necessary to develop another flexible model for the
multivariate extreme value distribution which leads to the nestedness of the chain with the
change of the order.

Shortly speaking, our approach in this paper concentrates on the tail (or extremal) behavior
of a given time series, and the tails are modeled by (4.10) or (4.11) through a multivariate
extreme value distribution together with a k-th order Markov chain. All the data below the
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threshold u are lumped together to consist of a single state u and are never modeled. A
possible extension of this approach is to allow the data below the threshold to have some
stochastic structure (e.g, AR(k) model). However, the detailed construction will be much
harder.
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