• Title/Summary/Keyword: Extractant

Search Result 204, Processing Time 0.024 seconds

The Optimum Condition Analysis of Vanadium Solvent Extraction by Alamine336 from the Synthetic Vanadium Sulfate Solution. (황산바나듐 모의용액으로부터 Alamine336에 의한 바나듐 용매추출의 최적조건 연구)

  • Ahn, Jong-Gwan;Ahn, Jae-Woo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.12
    • /
    • pp.823-829
    • /
    • 2008
  • The solvent extraction process for the recovery of vanadium from leaching solution of SCR(selective catalytic reduction) spent catalyst was investigated by using Alamine336 as an extractant. The effects of experimental conditions, such as initial pH and concentration of sulfate ion, and ammonia concentration of stripping solution were studied. The extraction percentage of vanadium were increased with the increase of initial pH of leaching solution and decreased with the increase of sulfate ion. More than 99% of vanadium in leaching solution were extracted and stripped at the A/O ratio of 1.0 in 2 stages. On the basis of these results, an optimum solvent extraction process which vanadium was effectively recovered from SCR spent catalyst was proposed.

Ammonia as Extractant and Reactant for Ginsenosides

  • Cho In-Ho;Hohaus Eberhard;Lentz Harro
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.486-490
    • /
    • 2002
  • In different approaches ginsenosides were extracted from Korean ginseng roots by ammonia and for comparison with methanol-water and water. The extracts have been analyzed qualitatively and quantitatively to evaluate yield and selectivity of extractions of ginsenosides. Water supplied the lowest yield. The yields of extracts with liquid ammonia were higher than those with methanol-water. However, this is partly due to the conversion of malonyl ginsenoside to normal ginsenosides by ammonia. It was proved by HPLC that malonyl-ginsenosides $m-Rb_1,\;m-Rb_2,$ m-Rc and m-Rd were converted to the corresponding neutral ginsenosides. Furthermore, ginsenosides from ginseng roots were extracted by alkaline methanol-water $(60\%)$ solutions. Alternatively, the extracts of the methanol-water $(60\%)$ extraction were treated with sodium hydroxide solution. Both methods also convert the malonyl-ginsenosides to neutral ginsenosides.

  • PDF

Adsorptive Bubble Separation of Zinc (II) Using Capric Acid as Collector (추출제로 카프르산을 사용한 아연(II)의 흡착 기포 분리)

  • Chung Hee Kwak;Chul Lee
    • Nuclear Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.149-153
    • /
    • 1983
  • The removal of zinc (II) from aqueous solutions has been studied by the adsorptive bubble separation processes such as solvent sublation and foam fractionation processes using capric acid as collector. The efficiency of the remoal process has been studied by changing the ionic strength and pH and the bubble separation method has been compared with the solvent extraction process using the capric acid dissolved in benzene as extractant.

  • PDF

Solvent Extraction Study for 4f Series Elements by bis(2-ethylhexyl) Phosphoric Acid

  • Rhee, C.T.;Cho, H.M.;Kim, S.H.
    • Nuclear Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.199-206
    • /
    • 1975
  • A solvent extraction technique, using bis (2-ethylhexyl) phosphoric acid, (HDEHP), as the extractant, was employed to examine some characteristical difference between lighter and heavier parts of 4f series. Some difference in temperature dependencies of the distribution ratios between the two groups were observed for the aqueous systems of H$_2$SO$_4$ and HCI. This experimental results were tentatively assigned as the difference in the ability of formation of inner coordination complex with HDEHP derived from the lanthanon contraction.

  • PDF

Remediation of Heavy Metal Contamination in OBOD Site with Soil Washing : Selection of Extractants (토양세척법에 의한 중금속오염 폐탄처리장 토양의 정화 : 세척액의 선정)

  • Lee, Sang-Hwan;Kim, Eul-Young;Seo, Sang-Kee;Kim, Gweon-Bo;Kim, Jae-Hwan;Lee, Jong-Keun
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.2
    • /
    • pp.44-53
    • /
    • 2008
  • The efficiences of mineral acid (HCl), neutral salts ($CaCl_2$), and chelating agent (citric acid and $Na_2$-EDTA) were tested for extracting heavy metals from open burning and open detonation (OBOD) site soil. The extraction efficiencies of Cd, Cu, Pb and Zn from soil for various extractants were in the order of HCl > citric acid > $Na_2$-EDTA > $CaCl_2$, HCl (1.0 M) extracted effectively 82%, 86%, 80%, and 46% of initial total concentrations of Cd, Cu, Pb, and Zn, respectively. Significant negative correlations were observed between pH of extractant and amount of extracted heavy metals. Initially, examined heavy metals were predominantly bound to carbonate and Fe, Mn-oxide fraction. Though the significant amount of carbonate and Fe, Mn-oxide bounded metals were removed but a significant amount remained metals shifted to exchangeable (more mobile) fraction by HCl and citric acid extraction. The increased mobility of remaining metals could be problematic for water resources, thus careful management is needed to control the movement of heavy metals.

Optimization of Analytical Conditions for the Quantification of Explosive Compounds in Soil using HPLC (HPLC에 의한 토양내 화약물질 정량분석조건 최적화)

  • Cho, Jung-Hyun;Bae, Bum-Han;Kim, Kye-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.1
    • /
    • pp.51-60
    • /
    • 2009
  • A series of experiments was performed to develop an optimized analytical procedure for the analysis of explosives in soil by HPLC with soil samples collected at two live-fire military shooting ranges. The minimum amount of soil to be collected, Wmin, for the analysis of explosive compounds was 125g, based on the segregation and homogeneity constants that account for soil heterogeneity and non-homogeneous distribution of target explosive compounds. The optimization of extraction and HPLC analytical conditions were also studied based on analytes CV values. The most effective soil/ extractant ratio was estimated to be 10g-pretreated soil/20 mL acetonitrile as extractant. The optimized HPLC elution conditions for the separation of US EPA designated 14 explosive compounds, were column temperature 30${\circ}C$, eluents ratio of isopropanol: acetonitrile: water = 18 : 12: 70, and flow rate of 0.8 mUmin at 230 nm. However, UV wavelength 254 nm was better for the analysis of NB, 2,4-DNT, 2NT, 4NT, and 3NT.

Comparison of Various Single Chemical Extraction Methods for Predicting the Bioavailability of Arsenic in Paddy Soils

  • Go, Woo-Ri;Jeong, Seon-Hee;Kunhikrishnan, Anitha;Kim, Gyeong-Jin;Yoo, Ji-Hyock;Cho, Namjun;Kim, Kwon-Rae;Kim, Kye-Hoon;Kim, Won-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.464-472
    • /
    • 2014
  • The Codex Committee of Contaminants in Food (CCCF) has been discussing a new standard for arsenic (As) in rice since 2010 and a code of practice for the prevention and reduction of As contamination in rice since 2013. Therefore, our current studies focus on setting a maximum level of As in rice and paddy soil by considering bioavailability in the remediation of As contaminated soils. This study aimed to select an appropriate single chemical extractant for evaluating the mobility of As in paddy soil and the bioavailability of As to rice. Nine different extractants, such as deionized water, 0.01 M $Ca(NO_3)_2$, 0.1 M HCl, 0.2 M $C_6H_8O_7$, 0.43 M $HNO_3$, 0.43 M $CH_3COOH$, 0.5 M $KH_2PO_4$, 1 M HCl, and 1 M $NH_4NO_3$ were used in this study. Total As content in soil was also determined after aqua regia digestion. The As extractability of the was in the order of: Aqua regia > 1 M HCl > 0.5 M $KH_2PO_4$ > 0.43 M $HNO_3$ > 0.2 M $C_6H_8O_7$ > 0.1 M HCl > 0.43 M $CH_3COOH$ > deionized water > 1 M $NH_4NO_3$ > 0.01 M $Ca(NO_3)_2$. Correlation between soil extractants and As content in rice was in the order of : deionized water > 0.01 M $Ca(NO_3)_2$ > 0.43 M $CH_3COOH$ > 0.1 M HCl > 0.5 M $KH_2PO_4$ > 1 M $NH_4NO_3$ > 0.2 M $C_6H_8O_7$ > 0.43 M $HNO_3$ > 1M HCl > Aqua regia. BCF (bioconcentration factor) according to extractants was in the order of : 0.01M $Ca(NO_3)_2$ > 1 M $NH_4NO_3$ > deionized water > 0.43 M $CH_3COOH$ > 0.1 M HCl > 0.43 M $HNO_3$ > 0.2 M $C_6H_8O_7$ > 0.5 M $KH_2PO_4$ > 1 M HCl > Aqua regia. Therefore, 0.01 M $Ca(NO_3)_2$ ($r=0.78^{**}$) was proven to have the greatest potential for predicting As bioavailability in soil with higher correlation between As in rice and the extractant.

Separation of Aluminum and Iron from Platinum Mixture using Synthetic Extraction Resins (합성(合成) 추출(抽出) 수지(樹脂)를 이용(利用)한 백금용액(白金溶液)으로부터 알루미늄과 철(鐵)의 분리(分離))

  • Lim, Gwang-Il;Han, Dong-Hyuk;Hwang, In-Sung;Han, Choon;Lee, Jin-Young;Kim, Joon-Soo;Park, Hyung-Kyu
    • Resources Recycling
    • /
    • v.20 no.3
    • /
    • pp.68-76
    • /
    • 2011
  • For the separation of aluminum and iron from platinum mixtures, extraction resins were synthesized and separation efficiencies were compared with those by commercial one, $P_{204}$. During synthesis, the suspension polymerization method was adopted with D2EHPA as an extractant. Also, benzoyl peroxide as a starter was divided into 3parts and injected for the uniform size and dispersion of resin particles. Comparison tests resulted in 100% separation of Fe and Pt for both synthetic and $P_{204}$ resins. In case of Al and Pt, synthetic and $P_{204}$ resin gave extraction efficiencies of 99.9% and 98.9%, respectively. Difference in extractant contents of synthetic resin(61.8%) and $P_{204}$(60%) was considered to give differences in separation efficiencies of aluminum and iron elements. For both resins, separation efficiencies of Al and Fe increased up to $55^{\circ}C$. According to FT-IR analyses of both resins, specific peaks of D2EHPA and crosslinked polystyrene were identified at the wavenumber of $1000cm^{-1}$ and $2900cm^{-1}$ respectively.

Comparison of Multi-element Extraction Methods to Determine Available Phosphate and Exchangeable Cations of Korean Soils (토양의 유효태 인산과 치환성 양이온의 다성분동시추출 분석방법 비교)

  • Kim, Myung-Sook;Yang, Jae Eui;Kim, Yoo-hak;Yoon, Jung-Hui;Zhang, Yong-Seon;Kwak, Han-Gang;Ha, Sang-Keon;Hyun, Byung-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.3
    • /
    • pp.192-200
    • /
    • 2009
  • Soil testing is one of the best management practices for sustainable agriculture. Recently, as increasing soil testing needs, simplification of soil analytical procedure has been required. To determine recommendable multi-element extractant, the soil testing results of available phosphate and exchangeable cations between the conventional methods (Lancaster and 1M $NH_4OAc) and multi-element extraction methods such as Mehlich III, Modified Morgan and Kelowna methods were compared. There were highly significant correlation between the conventional methods and multi-element extraction methods (Mehlich III, Modified Morgan and Kelowna) for available phosphate and exchangeable K, Ca, Mg and Na. The coefficients of determination ($R^2) between available phosphate extracted by Lancaster method and multielement extraction methods were in the order of Mehlich III ($0.979^{***}$) > Kelowna ($0.977^{***}$) > Modified(Mod.). Morgan ($0.553^{***}$). For exchangeable cations, there were highly significant correlations between 1M $NH_4OAc method and Mehlich III, Mod. Morgan and Kelowna. However, exchangeable K, Ca and Mg by Mehlich III method were more highly correlated with conventional method than other methods. Therefore, Mehlich III extraction method could be recommended as a single extractant for simultaneous measurement using ICP in the analysis of avaliable phosphate and exchangeable cations.

Effective Method for Lend Extraction from Pb - Contaminated Soil with EDTA (EDTA를 사용한 납 오염 토양에서의 효율적인 납 추출)

  • 김철성
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.1
    • /
    • pp.3-11
    • /
    • 1999
  • The effects of major cations in soils, soil : extractant ratio, and EDTA : lead stoichiometric ratio on the extraction efficiency of lead using EDTA were studied for 4 different actual lead-contaminated soils and one artificially lead-contaminated soil. Extraction of lead from the lead-contaminated soil was not affected by a soil : extractant ratio as low as 1 : 3 but instead was dependent on the quantity of EDTA present. Results of the experiments showed that the extraction efficiency for each soil was different, but if sufficiently large amount of EDTA was applied, all the lead may be extracted except for a soil from lead mining area. The differences in extraction efficiencies nay be due to the major cations present in soils which may compete with lead for active sites on EDTA. The total molar amount of major cations extracted was as muck as 20 times more than the added molar amount of EDTA. For some of the soils tested, the extraction efficiency of lead may be affected by being occluded in the Fe and Mn oxides present in the soil. While major cations present in the soil may be one of the factors affecting lead extraction efficiency, the type of lead species present may also play a role. When these factors affect severely, the using of EDTA to extract lead from lead-contaminated soil might be non-effective method.

  • PDF