Browse > Article
http://dx.doi.org/10.7745/KJSSF.2014.47.6.464

Comparison of Various Single Chemical Extraction Methods for Predicting the Bioavailability of Arsenic in Paddy Soils  

Go, Woo-Ri (Chemical Safety Division, National Academy of Agricultural Science, RDA)
Jeong, Seon-Hee (Chemical Safety Division, National Academy of Agricultural Science, RDA)
Kunhikrishnan, Anitha (Chemical Safety Division, National Academy of Agricultural Science, RDA)
Kim, Gyeong-Jin (Chemical Safety Division, National Academy of Agricultural Science, RDA)
Yoo, Ji-Hyock (Chemical Safety Division, National Academy of Agricultural Science, RDA)
Cho, Namjun (Chemical Safety Division, National Academy of Agricultural Science, RDA)
Kim, Kwon-Rae (Department of Agronomy and Medicinal Plant Resources, GNTECH)
Kim, Kye-Hoon (Department of Environmental Horticulture, University of Seoul)
Kim, Won-Il (Chemical Safety Division, National Academy of Agricultural Science, RDA)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.47, no.6, 2014 , pp. 464-472 More about this Journal
Abstract
The Codex Committee of Contaminants in Food (CCCF) has been discussing a new standard for arsenic (As) in rice since 2010 and a code of practice for the prevention and reduction of As contamination in rice since 2013. Therefore, our current studies focus on setting a maximum level of As in rice and paddy soil by considering bioavailability in the remediation of As contaminated soils. This study aimed to select an appropriate single chemical extractant for evaluating the mobility of As in paddy soil and the bioavailability of As to rice. Nine different extractants, such as deionized water, 0.01 M $Ca(NO_3)_2$, 0.1 M HCl, 0.2 M $C_6H_8O_7$, 0.43 M $HNO_3$, 0.43 M $CH_3COOH$, 0.5 M $KH_2PO_4$, 1 M HCl, and 1 M $NH_4NO_3$ were used in this study. Total As content in soil was also determined after aqua regia digestion. The As extractability of the was in the order of: Aqua regia > 1 M HCl > 0.5 M $KH_2PO_4$ > 0.43 M $HNO_3$ > 0.2 M $C_6H_8O_7$ > 0.1 M HCl > 0.43 M $CH_3COOH$ > deionized water > 1 M $NH_4NO_3$ > 0.01 M $Ca(NO_3)_2$. Correlation between soil extractants and As content in rice was in the order of : deionized water > 0.01 M $Ca(NO_3)_2$ > 0.43 M $CH_3COOH$ > 0.1 M HCl > 0.5 M $KH_2PO_4$ > 1 M $NH_4NO_3$ > 0.2 M $C_6H_8O_7$ > 0.43 M $HNO_3$ > 1M HCl > Aqua regia. BCF (bioconcentration factor) according to extractants was in the order of : 0.01M $Ca(NO_3)_2$ > 1 M $NH_4NO_3$ > deionized water > 0.43 M $CH_3COOH$ > 0.1 M HCl > 0.43 M $HNO_3$ > 0.2 M $C_6H_8O_7$ > 0.5 M $KH_2PO_4$ > 1 M HCl > Aqua regia. Therefore, 0.01 M $Ca(NO_3)_2$ ($r=0.78^{**}$) was proven to have the greatest potential for predicting As bioavailability in soil with higher correlation between As in rice and the extractant.
Keywords
Arsenic; Paddy soil; Bioavailability; Single extraction method;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Alam, M.G.M., S. Tokunaga, and T. Maekaea. 2001. Extraction of arsenic in a synthetic arsenic contaminated soil using phosphate. Chemosphere 43:1035-1041.   DOI   ScienceOn
2 Seo, B.H., G.H. Lim, K.H. Kim, J.E. Kim, J.H. Hur, W.I. Kim, K.R. Kim. 2013. Comparison of single extractions for evaluation of heavy metal phytoavailability in soil. Korean J. of Environ. Agric. 32(3): 171-178.   과학기술학회마을   DOI
3 Shin, I.J. 2003. Translocation of heavy metals to some crops in paddy and upland soil around abandoned mines. Master Thesis. Chungnam National University, Korea.
4 Stroud, J.L., M.A. Khan, G.J. Norton, M.R. Islam, T. Dasgupta, Y.G. Zhu, A.H. Price, A.A. Meharg, S.P. McGrath, and F.J. Zhao. 2011. Assessing the labile arsenic pool in contaminated paddy soils by isotopic dilution techniques and simple extractions. Environ. Sci. Technol. 45:4262-4269.   DOI
5 Tipping, E., J. Rieuwerts, G. Pan, M.R. Ashmore, S. Lofts, M.T.R. Hill, M.E. Farago, and I. Thornton. 2003. The solid- solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales. Environ. Pollut. 125:213-225.   DOI   ScienceOn
6 Tyurin, I.V. 1931. A new modification of the volumetric method of determining soil organic matter by means of chromic acid. Pochvovedenie 26:36-47.
7 USEPA. 1992. Technical Support Document for the Land Application of Sewage Sludge.
8 USEPA. 1996. Soil Screening Guidance: Technical Background Document Table Content.
9 Yang, X., Q. Hou, Z. Yang, X. Zhang, and Y. Hou. 2012. Solid-solution partitioning of arsenic (As) in the paddy soil profiles in Chengdu plain, Southwest China. Geosci. Front.3:901-909.   DOI
10 Amofah, L.R., C. Maurice, and P. Bhattacharya. 2010. Extraction of arsenic from soils contaminated with wood preservation chemicals. Soil Sediment Contam. 19:142-159.   DOI
11 Bhattacharya, P., B.M. Arun, J. Gunnar, and N. Sune. 2002. Metal contamination at a wood preservation site: characterisation and experimental studies on remediation. Sci. Total Environ. 290:165-180.   DOI
12 Bolan, N.S., A. Kunhikrishnan, R. Thangarajan, J. Kumpiene, J.H. Park, T. Makino, M.B. Kirkham, and K. Scheckel. 2014. Remediation of heavy metal(loid)s contaminated soils - To mobilize or to immobilize? J. Hazard. Mater. 266:141-166.   DOI
13 Brun, L.A., J. Maillet, J. Richarte, P. Herrmann, and J.C. Remy. 1998. Relationships between extractable copper, soil properties and copper uptake by wild plants in vineyard soils, Environ. Pollut. 102:151-161.   DOI   ScienceOn
14 CLEA. 1998. The Contaminated Land Exposure Assessment Model (CLEA); Technical basis and algorithms. Report prepared for the Department of Environment, Transport, and the Region and the Environment Agency.
15 DIN (Deutsches Institue fur Normung). 1995. Soil quality extraction of trace elements with ammonium nitrate solution. DIN 19730. Beuth Verlag, Berlin, Germany.
16 Elliott, H. A. and N.L. Shastri. 1999. Extraction decontamination of metal polluted soils using oxalate. Water Air Soil Pollut. 110:335-346.   DOI   ScienceOn
17 FAO/WHO. 2014. Report of the eighth session of the Codex committee on contaminants in foods.
18 Giri, P.K., K. Bhattacharyya, B. Sinha, and D. Mazumdar. 2012. Study of the suitability of selected extractants for determination of plant-available arsenic in some inceptisols of West Bengal, India. Commun. Soil Sci. Plant Anal. 43:2449-2466.   DOI
19 Fu, Y., M. Chen, X. Bi, Y. He, L. Ren, W. Xiang, S. Qiao, S. Yan, Z. Li, and Z. Ma. 2011. Occurrence of arsenic in brown rice and its relationship to soil properties from Hainan island, China. Environ. Pollut. 159:1757-1762.   DOI
20 Geebelen, W., J. Vangronsveld, D.C. Adriano, R. Carleer, and H. Clijsters. 2002. Amendment-induced immobilization of lead in a lead-spiked soil: evidence from phytotoxicity studies. Water Air Soil Pollut. 140:261-277.   DOI   ScienceOn
21 Gonzaga, M.I.S., L.Q. Ma, E.P. Pacheco, and W.M. dos Santos. 2012. Predicting arsenic bioavailability to hyperaccumulator Pteris vittata in arsenic-contaminated soils. Inter. J. Phytoremed. 14: 939-949.   DOI
22 Heemsbergen, D.A., M.S.J. Warne, K. Broos, M. Bell, D. Nash, M. McLaughlin, M. Whatmuff, G. Barry, D. Pritchard, and N. Penney. 2009. Application of phytotoxicity data to a new Australian soil quality guideline framework for biosolids. Sci. Total Environ. 407:2546-2556.   DOI   ScienceOn
23 Itanna, F., J. Breuer, and M. Olsson. 2008. The fate and bioavailability of some trace elements applied to two vegetable farms in Ethiopia. African J. of Agri. Research 3(11):797-807.
24 Jung, G.B., W.I. Kim, K.H. Moon, and I.S. Yoo. 2000. Comparison of simple extraction methods and availability for heavy metals in paddy soils. Korean J. Environ. Agric. 19(4):314-318.
25 KFDA, 2000. The criteria of Cd in polished rice. Korean Food and Drug Administration.
26 Kim, K.R., J.G. Kim, J.S. Park, M.S. Kim, G. Owens, G.H. Youn, and J.S. Lee. 2012a. Immobilizer-assisted management of metal-contaminated agricultural soils for safer food production. J. Environ. Manage. 102:88-95.   DOI   ScienceOn
27 KFDA, 2011. Food Sanitation Law. Korea Food and Drug Administration.
28 Kim, W.I., J.E. Yang, G.B. Jung, B.J. Park, S.W. Park, J.K. Kim, O.K. Kwon, and G.H. Ryu. 2007. Bioavailability and safety issues of heavy metals in paddy soil-rice continuum in Korea. FFTC Extension Bulletin 597:1-14
29 Kim, K.R., G. Owens, and R. Naidu. 2009. Heavy metal distribution, bioaccessibility and phytoavailability in long-term contaminated soils from lake Macquarie, Australia. Aust. J. Soil Res. 47(2):166-176.   DOI   ScienceOn
30 Kim, J.Y., J.H. Lee, A. Kunhikrishnan, D.W. Kang, M.J. Kim, J.H. Yoo, D.H. Kim, Y.J. Lee, and W.I. Kim. 2012b. Transfer factor of heavy metals from agricultural soil to agricultulral products. Korean J. Environ. Agric. 31(4):300-307.   DOI   ScienceOn
31 Kim, J.Y., W.I. Kim, A. Kunhikrishnan, D.W. Kang, D.H. Kim, Y.J. Lee, Y.J. Kim, and C.T. Kim. 2013. Determination of arsenic species in rice grains using HPLC-ICP-MS. Food Sci. Biotechnol. 22(6):1509-1513.   DOI
32 Krishnamurti, G.S.R., and R. Naidu. 2000. Speciation and phytoavailability of cadmium in selected surface soils of South Australia. Aust. J. Soil Res. 38:991-1004.   DOI   ScienceOn
33 Lee, J.H., J.Y. Kim, W.R. Go, E.J. Jeong, A. Kunhikrishnan, G.B. Jung, D.H. Kim, and W.I. Kim. 2012. Current research trends for heavy metals of agricultural soils and uptake in Korea. Korean J. Environ. Agric. 31:75-95.   과학기술학회마을   DOI   ScienceOn
34 MOE, 2002. Soil environment conservation Act. Minister of Environment.
35 Mackovych, D., S. Cicmanova, and S. Pramuka. 2003. Forms of selected toxic elements. Partial final report of the project "Evaluation of the potential influence of geochemical environment on the health of the population in the Spis Gemer Ore Mountains". Bratislava:SGUDS. 55
36 McLaughlin, M.J., R.E. Hanmon, R.G. MacLaren, T.W. Speir, and S.L. Rogers. 2000. Review: a bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand, Aust. J. Soil Resh. 38:1037-1086.   DOI   ScienceOn
37 MOE, 1996. Soil environment conservation Act. Minister of Environment.
38 MOE, 2007-2009. Annual report on the detailed survey of soil contamination near closed metal mine. Ministry of Environment.
39 MOE, 2010a. Soil environment conservation Act. Minister of Environment.
40 MOE, 2010b. Standard test method for soil pollution. Ministry of Environment.
41 Naidu, R., N.S. Bolan, R.S. Kookana, and K.G. Tiller. 1994. Ionic-strengh and pH effects on the sorption of cadmium and the surface charge of soils. European J. Soil Sci. 45:419-429.   DOI   ScienceOn
42 Naidu, R., S. Rogers, V.V.S.R. Gupta, R.S. Kookana, N.S. Bolan, and D.C. Adriano. 2003. Bioavailability of metals in the soil plant environment and its potential role in risk assessment, in: Naidu, R., Rogers, S., Gupta, V.V.S.R., Kookana, R.S., Bolan, N.S., Adriano, D.C. (Eds). Bioavailability toxicity and risk relationships in ecosystems. Sci. Publishers Inc. New hampshire.
43 RDA (Rural Development Administration). 2011. Annul report of the monitoring project on agro-environmental quality.
44 NIAST (National Institute of Agricultural Science and Technology). 2000. Analytical methods of soil and plant.
45 Otte, P.F., J.P.A. Lijzen, J.G. Otte, F.A. Swartjes and C.W. Versluijs. 2001. Evaluation and revision of the CSOIL parameter set; Proposed parameter set for human exposure modelling and deriving Intervention Values for the first series of compounds. RIVM report 711701021.
46 Quevauviller, P., G. Rauret, A. Ure, J. Bacon, and H. Muntau. 1997. The certification of the EDTA and acetic acid extractable contents(mass fractions) of Cd, Cr, Cu, Ni, Pb and Zn in sewage sludge amended soils. CRM 483 and 484. Report EUR 17127 EN. Brussels: European Commission.
47 Ruby, M.W., A. Davis, T.E. Link, R. Schoof, R.L. Chaney, G.B. Freeman, and P. Bergstrom. 1993. Development of an in vitro screening test to evaluate the in vivo bioaccessibility of ingested mine-waste lead. Environ. Sci. Technol. 27(13):2870-2877.   DOI   ScienceOn
48 Salazar, M.J., J.H. Rodriguez, G.L. Nieto, and M.L. Pignata. 2012. Effects of heavy metal concentrations(Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean Glycine max (L.) Merrill. J. Hazard. Mater. 233-234, 244-253.   DOI   ScienceOn
49 Sauve, S., W. Hendershot, and H.E. Allen. 2000. Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ. Sci. Tech. 34(7):1125-1131.   DOI   ScienceOn
50 Savie, S., N. Cook, W.H. Hendershot, M.B. McBride. 1996. Linking plant tisuue contaminated soils, Environ. Pollut. 94:153-157.   DOI