• Title/Summary/Keyword: Extinguishing Time

Search Result 106, Processing Time 0.023 seconds

The Extinguishing Characteristics by Fluidity Variation of Protein Foam Extinguishing Agent (단백포소화약제의 유동성 변화에 따른 소화 특성)

  • Shin, Changsub;Jeong, Hyunjeong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.2
    • /
    • pp.18-23
    • /
    • 2014
  • Foam extinguishing agent is widely used for extinguishing combustible liquid fires. Compared to other foam type extinguishing agents, protein foam has relatively low cost and low toxicity and produces stable foam blanket which is excellent in heat resistance and sealability, despite it has weak fluidity. Therefore the study investigated foaming characteristics followed by various factors affecting the fluidity of the protein foam extinguishing agent. The extinguishing characteristics differentiated by the changes in fluidity were also experimented. Foaming performance was compared by measuring the expansion ratio and the 25% drainage time. Moreover, the 25% drainage time and the extinguishing time was compared. The results showed that the 25% drainage time and the expansion ratio were increased as the pressure of nozzle and the concentration of hydrolyzed protein liquid enlarged. However the foaming and extinguishing performance were not improved when the condition exceeded certain level of pressure and concentration. The fastest fire extinguishing condition was the nozzle pressure 4bar with the 85wt.% of concentration of hydrolyzed protein liquid.

Efficiency of Water Mist Suppression System Containing Viscosity Agent to Extinguish Wood Cribs Fire (증점제를 함유한 미분무수의 목재화재 소화효과)

  • Kim, Min Hyung;Shin, Changsub
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.78-84
    • /
    • 2014
  • Viscosity agents were added to water to improve extinguishing performance of low pressure water mist suppression system on wood cribs fire, and a small scale wood cribs fire experiment was conducted to measure the extinguishing performance. CMC and agar were used for viscosity agent and as the amount of viscosity agent enlarges, it showed the increase of the viscosity of aqueous solution and the decrease of the fluidity. On wood cribs fire experiment, the extinguishing efficiency was improved with supplemental viscosity agent as it enhanced the adhesive time of aqueous solution on the wood, and therefore expanded the contact time of fire surface. The surface tension of aqueous solution was decreased with the addition of agar which to be assumed as an increase factor of extinguishing efficiency. By the extinguishing experimental result, the most effective extinguishing agent was CMC 0.6 wt.%, with the flame suppression time and the extinguishing time were reduced by 70s and 93s respectively at this concentration.

A Development of Methodology for NOVEC Gas Fire Extinguishing System (NOVEC 가스 소화 설비 설계방법론 개발)

  • Yun, Jeong-In;Choi, Jae-Hyuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.206-210
    • /
    • 2015
  • The most important thing for NOVEC gas fire extinguishing equipment is to release NOVEC gas, which contained in the extinguishing container, to the safety section by the time appointed. For this matter, it is significant to decide arrangement and size of the proper piping equipment. This study has developed the design methodology of NOVEC gas fire extinguishing equipment in use of pipe network analysis techniques. Based on the design methodology, each design coefficient is chosen. It is found that the calculated result, which is 6.498 seconds, has been counted within the 10 seconds limit, which is fairly satisfied with extinguishing releasing time based on the developed methodology. At that time, the pressure loss is 21.09bar.

Comparison of Fire Extinguishing Effects for Water Mist Additives (미분무수 첨가제의 소화효과 비교)

  • Kim, Seung Il;Shin, Chang Sub
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.6
    • /
    • pp.23-28
    • /
    • 2013
  • In order to improve extinguishing performance of water mist, many studies of additives have been conducted. In this study, viscosity agent which has the ability to improve extinguishing performance by adhering to the surface on fire was used and fluorine-free surfactant was also added to water to enhance water's wetting ability. This study aimed to verify optimal concentration of extinguishing of additives according to fire source and extinguishing performance by comparison with pure water. In case of wood crib fire, the results show that flame suppression and extinguishing time of sodium alginate 0.4 wt.% are 3.4 times and 2.2 times shorter than those of pure water in 0.2 MPa respectively. It seems that large amount of water adhere to surface on fire, thus cooling effect on surface was enhanced. Also water consumption of sodium alginate 0.4wt.% is up to 65% lower than that of pure water. In case of heptane fire, extinguishing time of cocobetaine 0.1 wt.% is 9.7 times shorter than that of pure water in 0.2 MPa. It is thought that because cocobetaine can block oxygen and suppress oil mist by making emulsion film on fire surface due to a low surface tension. On the other hand, water consumption of cocobetaine 0.1 wt.% is 92% lower than that of pure water.

Optimum Fire Extinguishing Modeling using Impact Factor Analysis on Water Mist System of Pool Fire (영향인자 분석을 통한 고임화재의 미분무수 최적소화 모델링)

  • Hwang, Won-Jun;Kim, Hwang-Jin;Lee, Sung-Eun;Kim, Sung-Won;Oh, Kyu-Hyung
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.84-89
    • /
    • 2009
  • In this study, the fire extinguishing experiment was performed using a water mist nozzle with variation of factors which affect on the extinguishing time. The variables were distance from nozzle center to fire location, droplet size, height of nozzle and opening or not. With the experimental data, interaction and sensitivity between factors were analysed with Mini tab and deduce a optimum model of fire extinguishing of water mist system. Based on the experiment and modeling of fire extinguishing with water mist system, the most important factor on extinguishing time is the distance from the center of nozzle to fire and the opening effect was small compare with other factors.

An Experimental Study on Improvement of Fire Extinguishing Performance of Basic Sprinkler System (간이스프링클러 설비의 소화성능 향상에 관한 실험적 연구)

  • Hur, Min Noung;Shin, Changsub
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.3
    • /
    • pp.46-51
    • /
    • 2018
  • A basic sprinkler system is a fire extinguishing system that can be easily installed in a fire-vulnerable place such as a publicly used establishments. However, the publicly used establishments are not only complicated in structure, but also have a large amount of flammable interior materials, and the users are not normally in a normal state, which is a very dangerous fire-fighting object. Therefore, due to the low fire extinguishing performance of the basic sprinkler system installed in the publicly used establishments, the fire suppression control can not be performed quickly in case of fire, which may increase the life and property damage. In this study, the cases of quantitative changes of extinguishing water used in basic sprinkler system and the cases of addition of additives such as wetting agents, reinforced agents to improve extinguishing performance were compared. Experimental results showed that the extinguishing performance was improved as the quantity of extinguishing water increase and the reinforced agents showed similar performance to that of 60% increase in the amount of extinguishing water. The cooling time to $200^{\circ}C$ and oxygen concentration were improved up to 14.3% and 34.5%, respectively. In the case of using the wetting agent, the cooling time to $200^{\circ}C$ and oxygen concentration did not show any significant improvement, but showed the effect of preventing deep seated fire. In order to prevent loss of life and property, it is necessary to improve the performance of the basic sprinkler system by increasing amount of extinguishing water or using additives like reinforced agents.

Characteristics of Protein Foam Agent by Stabilizer on the Ship Fire Extinguishment (선박화재 적용 단백포 소화약제의 안정제에 따른 소화특성)

  • Lee, Eungwoo;Shin, Changsub
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.79-85
    • /
    • 2015
  • Onboard fire extinguishing system is important to protect cargo and human lives and every oil tanker has foam type fire extinguishing system. Because of environmental problem, agent which contains materials such as Perfluorinated compounds are regulated and the development of the environmental friendly agent is required. The protein foam has less environmental pollution problem and has an excellent fire extinguish performance to oil fire. In the research, bivalency metal salts were added as stabilizer to increase fire resistance and stability of the foam. Ferrous sulfate, Iron chloride and Nickel chloride were used and to adjust to vessel, sea water was applied. As a stabilizer increased, the expansion ratio was raised. However 25% drainage time was decreased over 2.0 wt.% which is knowable that the foam brokes easily. The amount of generated foam was measured to check fluidity of foam and it appeared that when $FeSO_4$ 1.2 wt.% was added, the amount of generated foam reached large and also the 25% drainage time was high. To evaluate the fire extinguishing performance for oil fire, the small scale oil fire test was executed. When $FeSO_4$ 1.2 wt.% was added, fire extinguishing time was in its shortest which informs fluidity of foam and stability are important factors on fire extinguishing efficiency.

Design and Implementation of the Automatic Fire Extinguishing System Based on the Ignition Point Tracking using the Flame Detecter (화재감지기를 사용한 발화점추적기반의 자동소방시스템 설계 및 구현)

  • Paik, Seung Hyun;Kim, Young Wung;Oh, Se Il;Park, Hong Bae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.3
    • /
    • pp.155-161
    • /
    • 2013
  • To reduce the personnel and material loss caused by fire, we propose the automatic fire extinguishing system based on the ignition point tracking using the flame detecter. This automatic fire extinguishing system is composed of the flame detecting system and the fire extinguishing system based on the water cannon. We study the method for the ignition point tracking and the automatic fire extinguishing using the water cannon and the flame detecter. The flame detecting system for the early fire detection and the ignition point tracking has to be satisfied the requirement of the detecting range and the flame detection time. So we study the signal process algorithm for an improvement of the flame detecting system.

A Study on Improving Extinguishing Capacity of Mobile Water Mist Equipment (이동식 미분무수 소화장비의 소화능력 향상에 관한 연구)

  • Kong, Ha-Sung;Kim, Jong-Jin
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.1
    • /
    • pp.15-26
    • /
    • 2009
  • This research has so far found out problems including the second damage of extinguishant and the short time of emission when using the existing dry chemical extinguisher and gas type extinguisher, and impossibility of constant extinguishing due to the inability of recharge at the field. To solve such problems, a mobile water mist system was developed and used. However, it is judged that more improved mobile water mist system is necessary because the force of the fire changed diversely and remote villages in mountains or islands where the force of fire extinguishing is short or delayed, require high capacity of fire extinguishing. Therefore a new equipment was developed and tested focusing on the improvement of extinguishing capacity and the performance of extinguishing was found out to be improved, compared to the existing mobile water mist system. It also showed a superior extinguishing capacity to dry chemical extinguisher or gas type extinguisher. Afterward an additional research is required of simplification of equipment, price cutting and the development of additive to enable high performance even with just small extinguishant.

A Study on the Direct Discharge Test for Verifying Design Concentration and Soaking Time for CO2 Fire Extinguishing System of Total Flooding (전역방출방식 CO2 소화설비의 설계농도 및 유지시간 검증을 위한 직접방사실험에 관한 연구)

  • Lee, Se-Myeoung;Moon, Sung-Woong;Ryu, Sang-Hoon
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.15-23
    • /
    • 2012
  • Indirect Test Method is often used instead of direct test method in test method for extinguishing performance of $CO_2$ extinguishing facility because of high cost, environment problems and difficulties of procedure. But in the danger facilities for a unit of nation, such as a petrochemical plant, a nuclear power plant, or etc. is better to verify the performance of the extinguishment through direct discharge test. In $CO_2$ extinguishing system for total flooding system installed in dangerous facilities in Korea, each protected area in surface fire and deep-seated fire had selected and verified of extinguishing performance of $CO_2$ extinguishing facilities. To get recognized as extinguishing performance, discharged $CO_2$ concentration to protected area should be equivalence with design concentration standards (NFSC and NFPA). The Design Concentration means that $CO_2$ extinguishing agent is considerate of concentration for percentage of allowance (20 %) from extinguishing concentration which available to control of flame. As test result, surface fire and deep seated fire in protected area is obtained $CO_2$ design concentration and maintained design concentration more than 20 minutes as deep-seated fire. Through this study, we introduced direct discharging test method and decision method. And furthermore, especially in the dangerous facilities as a unit of Nation, we suggested necessity about reliability of extinguishing facilities to use direct test method.