• 제목/요약/키워드: External disturbances

검색결과 383건 처리시간 0.029초

Kalman Filtering for Spacecraft Attitude Estimation by Low-Cost Sensors

  • Lee, Henzeh;Choi, Yoon-Hyuk;Bang, Hyo-Choong;Park, Jong-Oh
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제9권1호
    • /
    • pp.147-161
    • /
    • 2008
  • In this paper, fine attitude estimation using low-cost sensors for attitude pointing missions of spacecraft is addressed. Attitude kinematics and gyro models including bias models are in general utilized to estimate spacecraft attitude and angular rate. However, a linearized model and a transition matrix are derived in this paper from nonlinear spacecraft dynamics with external disturbances. A Kalman filtering technique is applied and offers relatively high estimation accuracy under dynamic uncertainties. The proposed approach is demonstrated using numerical simulations.

모델 불확실성과 외란이 있는 이동 로봇을 위한 적응 슬라이딩 모드 제어 (Adaptive Sliding Mode Control for Nonholonomic Mobile Robots with Model Uncertainty and External Disturbance)

  • 박봉석;최윤호;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1644-1645
    • /
    • 2007
  • This paper proposes an adaptive sliding mode control method for trajectory tracking of nonholonomic mobile robots with model uncertainties and external disturbances. The kinematic model represented by polar coordinates are considered to design a robust control system. Wavelet neural networks (WNNs) are employed to approximate arbitrary model uncertainties in dynamics of the mobile robot. From the Lyapunov stability theory, we derive tuning algorithms for all weights of WNNs and prove that all signals of an adaptive closed-loop system are uniformly ultimately bounded.

  • PDF

슬라이딩 모드를 이용한 로보트 매니퓰레이터의 실시간 제어에 관한 연구 (Study on Real Time Control of Robot Manipulator Using Sliding Mode)

  • 이민철
    • 대한기계학회논문집
    • /
    • 제16권11호
    • /
    • pp.2011-2020
    • /
    • 1992
  • 본 연구에서는 실용성을 중시하는 산업계의 요구에 부응하여 해석이 용이하면 서도 강인성을 갖춘 제어 알고리즘을 제안하여 실시간 제어가 가능한 시스템을 구축해 실험적으로 검토하였다. 매니퓰레이터와 서보계의 다이내믹스를 나타내는 미분방정 식은 선형요소와 비선형요소의 합으로 생각할 수 있다. 여기서 매니퓰레이터의 비선 형요소를 외란으로 간주해 슬라이딩 모드를 적용하므로 매니퓰레이터의 자유도가 높아 도 비교적 간단히 슬라이딩 모드의 존재 조건식으로 부터 절환 파라미터가 구해져 슬 라이딩 모드를 발생시킬 수 있는 알고리즘을 도출할 수가 있음을 보였다. 비선형요 소를 외란으로 간주하였을때 로보트 매니퓰레이터가 슬라이딩 모드에 들어갈 수 있도 록 외란에 대응하는 절환 제어입력을 종래의 방식대로 부가하면 이 제어입력으로 인해 채터링(chattering)이 증가하게 됨이 확인되었으며, 이러한 채터링을 줄일 수 있도록 새로운 절환 제어입력의 알고리즘을 도출하여 검토하였다.

고속 롤투롤 시스템의 펜듈럼 덴서를 사용한 장력계어기 매칭 설계 (Matching Design of a Tension Controller with Pendulum Dancer in Roll-to-Roll Systems)

  • 강현규;신기현
    • 한국정밀공학회지
    • /
    • 제26권6호
    • /
    • pp.81-89
    • /
    • 2009
  • Dancer systems are typical equipment for attenuation of tension disturbances. Lately, demands for high speed roll-to-roll machines are rising but it is prior to attenuate the tension variation on the web entering into the printing zone to achieve the speed increment. Maintaining a constant tension before the first printing cylinder is the key of high speed, high quality printing. Dancer has been researched in two ways, whether it is controlled or not. The first one is active dancer and the other one is passive dancer. In the active dancer, a position of idle roll of dancer is measured and the roll is moved by external hydraulic cylinder to control tension disturbances. While the passive one composed with spring, damper and idle roll has no external actuator to position the idle roll. The tension disturbance causes movement of dancer roll and the displacement of the roll regulates the tension variation. On the other hand a composite type of dancer is applied for roll-to-roll printing machines. It has same apparatus as passive dancer. The displacement of roll is measured and front(or rear) driven roller is controlled to position the roll. In this paper, it is presented an analysis of pendulum dancer including position feedback PI control and logic for PI gain tuning in roll-to-roll machines. Pole-zero map and root locus with varying system parameters gives a design method for control of the dancer.

듀얼 반응표면법을 이용한 V-그루브 GMA 용접공정 최적화에 관한 연구 (A Study on the Optimization for a V-groove GMA Welding Process Using a Dual Response Method)

  • 박형진;안승호;강문진;이세헌
    • Journal of Welding and Joining
    • /
    • 제26권2호
    • /
    • pp.85-91
    • /
    • 2008
  • In general, the quality of a welding process tends to vary with depending on the work environment or external disturbances. Hence, in order to achieve the desirable quality of welding, we should have the optimal welding condition that is not significantly affected by these changes in the environment or external disturbances. In this study, we used a dual response surface method in consideration of both the mean output variables and the standard deviation in order to optimize the V-groove arc welding process. The input variables for GMA welding process with the dual response surface are welding voltage, welding current and welding speed. The output variables are the welding quality function using the shape factor of bead geometry. First, we performed welding experiment on the interested area according to the central composite design. From the results obtained, we derived the regression model on the mean and standard deviation between the input and output variables of the welding process and then obtained the dual response surface. Finally, using the grid search method, we obtained the input variables that minimize the object function which led to the optimal V-groove arc welding process.

ROAD CROWN, TIRE, AND SUSPENSION EFFECTS ON VEHICLE STRAIGHT-AHEAD MOTION

  • LEE J-H.;LEE J. W.;SUNG I. C.
    • International Journal of Automotive Technology
    • /
    • 제6권2호
    • /
    • pp.183-190
    • /
    • 2005
  • During normal operating conditions, a motor vehicle is constantly subjected to a variety of forces, which can adversely affect its straight-ahead motion performance. These forces can originate both from external sources such as wind and road and from on-board sources such as tires, suspension, and chassis configuration. One of the effects of these disturbances is the phenomenon of vehicle lateral-drift during straight-ahead motion. This paper examines the effects of road crown, tires, and suspension on vehicle straight-ahead motion. The results of experimental studies into the effects of these on-board and external disturbances are extremely sensitive to small changes in test conditions and are therefore difficult to guarantee repeatability. This study was therefore conducted by means of computer simulation using a full vehicle model. The purpose of this paper is to gain further understanding of the straight-ahead maneuver from simulation results, some aspects of which may not be obtainable from experimental study. This paper also aims to clarify some of the disputable arguments on the theories of vehicle straight-ahead motion found in the literature. Tire residual aligning torque, road crown angle, scrub radius and caster angle in suspension geometry, were selected as the study variables. The effects of these variables on straight-ahead motion were evaluated from the straight-ahead motion simulation results during a 100m run in free control mode. Examination of vehicle behavior during straight-ahead motion under a fixed control mode was also carried out in order to evaluate the validity of several disputable arguments on vehicle pull theory, found in the literature. Finally, qualitative comparisons between the simulation results and the test results were made to support the validity of the simulation results.

Design of Active Disturbance Rejection Control for Inductive Power Transfer Systems

  • Wang, Yanan;Dong, Lei;Liao, Xiaozhong;Ju, Xinglong;Xiao, Furong
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1434-1447
    • /
    • 2018
  • The control design of inductive power transfer (IPT) systems has attracted a lot of attention in the field of wireless power transmission. Due to the high-order resonant networks and multiple loads in IPT systems, a simplified model of an IPT system is preferred for analysis and control design, and a controller with strong robustness is required. Hence, an active disturbance rejection control (ADRC) for IPT systems is proposed in this paper. To realize the employment of ADRC, firstly a small-signal model of an LC series-compensative IPT system is derived based on generalized state-space averaging (GSSA), then the ADRC is implemented in the designed IPT system. The ADRC not only provides superior robustness to unknown internal and external disturbances, but also requires few knowledge of the IPT system. Due to the convenient realization of ADRC, the designed IPT system retains its simple structure without any additional circuits. Finally, a frequency domain analysis and experimental results have validated the effectiveness of the employed ADRC, especially its robustness in the presence of frequency drifts and other common disturbances.

A High Performance Permanent Magnet Synchronous Motor Servo System Using Predictive Functional Control and Kalman Filter

  • Wang, Shuang;Zhu, Wenju;Shi, Jian;Ji, Hua;Huang, Surong
    • Journal of Power Electronics
    • /
    • 제15권6호
    • /
    • pp.1547-1558
    • /
    • 2015
  • A predictive functional control (PFC) scheme for permanent magnet synchronous motor (PMSM) servo systems is proposed in this paper. The PFC-based method is first introduced in the control design of speed loop. Since the accuracy of the PFC model is influenced by external disturbances and speed detection quantization errors of the low distinguishability optical encoder in servo systems, it is noted that the standard PFC method does not achieve satisfactory results in the presence of strong disturbances. This paper adopted the Kalman filter to observe the load torque, the rotor position and the rotor angular velocity under the condition of a limited precision encoder. The observations are then fed back into PFC model to rebuild it when considering the influence of perturbation. Therefore, an improved PFC method, called the PFC+Kalman filter method, is presented, and a high performance PMSM servo system was achieved. The validity of the proposed controller was tested via experiments. Excellent results were obtained with respect to the speed trajectory tracking, stability, and disturbance rejection.

로봇 매니퓨레이터의 강건한 적응 슬라이딩 모드제어 (On the Robust Adaptive Sliding Mode Control of Robot Manipulators)

  • 배준경
    • 전자공학회논문지SC
    • /
    • 제38권6호
    • /
    • pp.28-36
    • /
    • 2001
  • 피드-포워드 보상부분과 불연속 제어 부분으로 구성되는 강건한 적응 슬라이딩 모드 로봇제어 알고리즘을 유도하였다. 미지의 매개변수는 실시간으로 추정되는 매개변수를 포함하는 그룹과 실시간으로 추정하지 않는 매개변수를 포함하는 그룹으로 나누어진다. 그런 다음 외란 및 실시간으로 추정하지 않는 매개변수에서의 불확실성 효과를 보상하기 위해 슬라이딩 제어 항이 토크 입력에 포함된다. 또한 매니퓨레이터 동역학 구조의 효율적인 이용으로 인하여 알고리즘은 계산이 간단하다. 매개변수 불확실성과 외부 외란의 존재에도 불구하고 제어기는 대국적 점근적으로 안정하며 추적오차가 영에 수렴함을 보여준다.

  • PDF

연마 브러시 접촉력 산출을 위한 비선형 강건제어기 실험 (Experiments on Robust Nonlinear Control for Brush Contact Force Estimation)

  • 이병수
    • 한국정밀공학회지
    • /
    • 제27권3호
    • /
    • pp.41-49
    • /
    • 2010
  • Two promising control candidates have been selected to test the sinusoidal reference tracking performance for a brush-type polishing machine having strong nonlinearities and disturbances. The controlled target system is an oscillating mechanism consisting of a common positioning stage of one degree-of-freedom with a screw and a ball nut driven by a servo motor those can be obtained commercially. Beside the strong nonlinearity such as stick-slip friction, the periodic contact of the polishing brush and the work piece adds an external disturbance. Selected control candidates are a Sliding Mode Control (SMC) and a variant of a feedback linearization control called Smooth Robust Nonlinear Control (SRNC). A SMC and SRNC are selected since they have good theoretical backgrounds, are suitable to be implemented in a digital environment and show good disturbance and modeling uncertainty rejection performance. It should be also noted that SRNC has a nobel approach in that it uses the position information to compensate the stickslip friction. For both controllers analytical and experimental studies have been conducted to show control design approaches and to compare the performance against the strong nonlinearity and the disturbances.