DOI QR코드

DOI QR Code

Design of Active Disturbance Rejection Control for Inductive Power Transfer Systems

  • Wang, Yanan (Department of Automation, Beijing Institute of Technology) ;
  • Dong, Lei (Department of Automation, Beijing Institute of Technology) ;
  • Liao, Xiaozhong (Department of Automation, Beijing Institute of Technology) ;
  • Ju, Xinglong (Beijing Institute of Space Launch Technology) ;
  • Xiao, Furong (Huawei Technologies CO., LTD)
  • Received : 2017.11.14
  • Accepted : 2018.04.02
  • Published : 2018.09.20

Abstract

The control design of inductive power transfer (IPT) systems has attracted a lot of attention in the field of wireless power transmission. Due to the high-order resonant networks and multiple loads in IPT systems, a simplified model of an IPT system is preferred for analysis and control design, and a controller with strong robustness is required. Hence, an active disturbance rejection control (ADRC) for IPT systems is proposed in this paper. To realize the employment of ADRC, firstly a small-signal model of an LC series-compensative IPT system is derived based on generalized state-space averaging (GSSA), then the ADRC is implemented in the designed IPT system. The ADRC not only provides superior robustness to unknown internal and external disturbances, but also requires few knowledge of the IPT system. Due to the convenient realization of ADRC, the designed IPT system retains its simple structure without any additional circuits. Finally, a frequency domain analysis and experimental results have validated the effectiveness of the employed ADRC, especially its robustness in the presence of frequency drifts and other common disturbances.

Keywords

References

  1. W. Ejaz, M. Naeem, A. Shahid, A. Anpalagan, and M. Jo, "Efficient energy management for the internet of things in smart cities," IEEE Commun. Mag., Vol.55, No.1, pp. 84-91, Jan. 2017. https://doi.org/10.1109/MCOM.2017.1600218CM
  2. M. Junil, H. Hyeonseok, J. Byeonghak, C. K. Kwon, T.G. Kim, and S.W. Kim, “Design and implementation of a high-efficiency 6.78 MHz resonant wireless power transfer system with a 5W fully integrated power receiver,” IET Power Electron., Vol. 10, No. 5, pp. 577-587, Apr. 2017. https://doi.org/10.1049/iet-pel.2016.0107
  3. H. Mei, K. Thackston, R. Bercich, J. Jefferys, and P. Irazoqui, “Cavity resonator wireless power transfer system for freely moving animal experiments,” IEEE Trans. Biomed. Eng., Vol. 64, No. 4, pp. 775-785, Apr. 2017. https://doi.org/10.1109/TBME.2016.2576469
  4. B. Lee, M. Kiani, and M. Ghovanloo, “A triple-loop inductive power transmission system for biomedical applications,” IEEE Trans. Biomed. Circuits Syst., Vol. 10, No. 1, pp. 138-148, Feb. 2016. https://doi.org/10.1109/TBCAS.2014.2376965
  5. S. Moon and G. W. Moon, “Wireless power transfer system with an asymmetric four-coil resonator for electric vehicle battery chargers,” IEEE Trans. Power Electronics, Vol. 31, No. 10, pp. 6844-6854, Oct. 2016. https://doi.org/10.1109/TPEL.2015.2506779
  6. Q. W. Zhu, L. F. Wang, Y. J. Guo, C. L. Liao, and F. Li, “Applying LCC compensation network to dynamic wireless EV charging system,” IEEE Trans. Ind. Electron., Vol. 63, No. 10, pp. 6557-6567, Oct. 2016. https://doi.org/10.1109/TIE.2016.2529561
  7. R. K. Mai, Y. Chen, Y. Li, Y. Y. Zhang, G. Z. Gao, and Z. Y. He, “Inductive power transfer for massive electric bicycles charging based on hybrid topology switching with a single inverter,” IEEE Trans. Power Electron., Vol. 32, No. 8, pp. 5897-5906, Aug. 2017. https://doi.org/10.1109/TPEL.2017.2654360
  8. L. L. Tan, S. L. Pan, H. Liu, C. F. Xu, J. P. Guo, and X. L. Huang, “Load detection method for multiple-receiver wireless power transfer systems,” IET Power Electron., Vol. 10, No. 14, pp. 1951-1958, Nov. 2017. https://doi.org/10.1049/iet-pel.2016.0987
  9. Y. Lu, M. Huang, L. Cheng, W. H. Ki, U. Seng-Pan, and R. P. Martins, “A dual-output wireless power transfer system with active rectifier and three-level operation,” IEEE Trans. Power Electron., Vol. 32, No. 2, pp. 927-930, Feb. 2017. https://doi.org/10.1109/TPEL.2016.2601623
  10. M. Barati and M. Yavari, “A power efficient buck-boost converter by reusing the coil inductor for wireless bio-implants,” Int. J. Circuit Theory Appl., Vol. 45, No. 11, pp. 1673-1685, Nov. 2017. https://doi.org/10.1002/cta.2320
  11. W. Zhang, S. C. Wong, C. K. Tse, and Q. H. Chen, "Design for efficiency optimization and voltage controllability of series-series compensated inductive power transfer systems," IEEE Trans. Power Electron., Vol. 29, No. 1, pp. 191-200, Jan. 2014. https://doi.org/10.1109/TPEL.2013.2249112
  12. T. Diekhans and R. W. De Doncker, “A dual-side controlled inductive power transfer system optimized for large coupling factor variations and partial load,” IEEE Trans. Power Electron., Vol. 30, No. 11, pp. 6320-6328, Nov. 2015. https://doi.org/10.1109/TPEL.2015.2393912
  13. J. D. Wu, C. W. Zhao, Z. Y. Lin, J. Du, Y. H. Hu, and X. N. He, “Wireless power and data transfer via a common inductive link using frequency division multiplexing,” IEEE Trans. Ind. Electron., Vol. 62, No. 12, pp. 7810-7820, Dec. 2015. https://doi.org/10.1109/TIE.2015.2453934
  14. W. P. Choi, W. C. Ho, and S. Y. R. Hui, "Bidirectional communication techniques for wireless battery charging systems & portable consumer electronics," in Proc. IEEE APECE, pp. 2251-2257, 2010.
  15. D. J. Thrimawithana, U. K. Madawala, and M. Neath, “A synchronization technique for bidirectional IPT systems,” IEEE Trans. Ind. Electron., Vol. 60, No. 1, pp. 301-309, Jan. 2013. https://doi.org/10.1109/TIE.2011.2174536
  16. Y. Sun, P. X. Yan, Z. H. Wang, and Y. Y. Luan, “The parallel transmission of power and data with the shared channel for an inductive power transfer system,” IEEE Trans. Power Electron., Vol. 31, No. 8, pp. 5495-5502, Aug. 2016. https://doi.org/10.1109/TPEL.2015.2497739
  17. Y. Li, C. Zhang, Q. X. Yang, J. X. Li, Y. X. Zhang, X. Zhang, and M. Xue, “Improved ant colony algorithm for adaptive frequency-tracking control in WPT system,” IET Microwaves Antennas & Propagation, Vol. 12, No. 1, pp. 23-28, Jan. 2018.
  18. F. F. A. Pijl, M. Castilla, and P. Bauer, “Adaptive sliding-mode control for a multiple-user inductive power transfer system without need for communication,” IEEE Trans. Industrial Electron., Vol. 60, No. 1, pp. 271-279, Jan. 2013. https://doi.org/10.1109/TIE.2012.2200209
  19. P. V. Tuan and I. Koo, "Optimal multiuser MISO beamforming for power-splitting SWIPT cognitive radio networks," IEEE ACCESS, Vol. 5, pp. 14141-14153, 2017. https://doi.org/10.1109/ACCESS.2017.2727073
  20. X. F. Yuan, Y. Z. Xiang, Y. Wang, and X. G. Yan, “Neural networks based PID control of bidirectional inductive power transfer system,” Neural Processing Lett., Vol. 43, No. 3, pp. 837-847, Jun. 2016. https://doi.org/10.1007/s11063-015-9453-2
  21. Z. Zhang, H. L. Pang, C. H. T. Lee, X. K. Xu, X. L. Wei, and J. Wang, "Comparative analysis and optimization of dynamic charging coils for roadway-powered electric vehicles," IEEE Trans. Magn., Vol. 53, No. 11, Nov. 2017.
  22. J. Xiao, C. H. Xu, Q. Zhang, X. B. Huang, J. Y. Qin, “Robust transceiver design for two-user MIMO interference channel with simultaneous wireless information and power transfer,” IEEE Trans. Veh. Technol., Vol. 65, No. 5, pp. 3823-3828, May. 2016. https://doi.org/10.1109/TVT.2015.2435799
  23. A. Kamineni, G. A. Covic, and J. T. Boys, “A mistuning-tolerant and controllable power supply for roadway wireless power systems,” IEEE Trans. Power Electron., Vol. 32, No. 9, pp. 6689-6699, Sep. 2017. https://doi.org/10.1109/TPEL.2016.2622300
  24. A. Zaheer, M. Neath, H. Z. Beh, and G. A. Govic, “A dynamic EV charging system for slow moving traffic applications,” IEEE Trans. Transport. Electrific., Vol. 3, No. 2, pp. 354-369, Jun. 2017. https://doi.org/10.1109/TTE.2016.2628796
  25. Q. J. Deng, J. T. Liu, D. Czarkowski, M. Bojarski, E. Asa, and F. De Leon, “Design of a wireless charging system with a phase-controlled inverter under varying parameters,” IET Power Electron., Vol. 9, No. 13, pp. 2461-2470, Nov. 2016. https://doi.org/10.1049/iet-pel.2015.0275
  26. A. K. Swain, M. J. Neath, U. K. Madawala, and D. J. Thrimawithana, “A dynamic multivariable state-space model for bidirectional inductive power transfer systems,” IEEE Trans. Power Electron., Vol. 27, No. 11, pp. 4772-4780, Nov. 2012. https://doi.org/10.1109/TPEL.2012.2185712
  27. A. K. Swain, S. Devarakonda, U. K. Madawala, “Modeling, sensitivity analysis, and controller synthesis of multipickup bidirectional inductive power transfer systems,” IEEE Trans. Ind. Inform., Vol. 10, No. 2, pp. 1372-1380, May 2014. https://doi.org/10.1109/TII.2014.2307159
  28. X. Dai and X. Y. Huang, "Study on dynamic accurate modelling and nonlinear phenomena of a push-pull soft switched converter," in Proc. IEEE CIEA, pp. 1-4, 2006.
  29. H. Hao, G. A. Covic, and J. T. Boys, “An approximate dynamic model of LCL-based inductive power transfer power supplies,” IEEE Trans. Power Electron., Vol. 29, No. 10, pp. 5554-5567, Oct. 2014. https://doi.org/10.1109/TPEL.2013.2293138
  30. K. Aditya and S. S. Williamson, "Advanced controller design for a series-series compensated inductive power transfer charging infrastructure using asymmetrical clamped mode control," in Proc. IEEE APECE, pp. 2718-2724, 2015.
  31. X. Dai, Y. Zou, and Y. Sun, “Uncertainty modeling and robust control for LCL resonant inductive power transfer system,” J. Power Electron., Vol. 13, No. 5, pp. 814-828, Sep. 2013. https://doi.org/10.6113/JPE.2013.13.5.814
  32. S. R. Sanders, J. M. Noworolski, X. J. Z. Liu, and G.C. Verghese, “Generalized averaging method for power conversion circuits,” IEEE Trans. Power Electron., Vol. 6, No. 2, pp. 251-259, Apr. 1991. https://doi.org/10.1109/63.76811
  33. J. P. Xu and C. Q. Lee, "Generalized state-space averaging approach for a class of periodically switched networks," IEEE Trans. Circuits Syst.-1: Fundam. Theory Appl., Vol. 44, No. 11, pp. 1078-1081, Nov. 1997. https://doi.org/10.1109/81.641772
  34. J. Q. Han, Active Disturbance Rejection Control Technique, National Defense Industry Press, Beijing, 2008.
  35. G. Tian and Z. Q. Gao, "Frequency response analysis of active disturbance rejection based control system," in Proc. IEEE ICCA, pp.1595-1599, 2007.