Browse > Article
http://dx.doi.org/10.6113/JPE.2015.15.6.1547

A High Performance Permanent Magnet Synchronous Motor Servo System Using Predictive Functional Control and Kalman Filter  

Wang, Shuang (School of Mechatronic Engineering and Automation, Shanghai University)
Zhu, Wenju (School of Mechatronic Engineering and Automation, Shanghai University)
Shi, Jian (School of Mechatronic Engineering and Automation, Shanghai University)
Ji, Hua (School of Mechatronic Engineering and Automation, Shanghai University)
Huang, Surong (School of Mechatronic Engineering and Automation, Shanghai University)
Publication Information
Journal of Power Electronics / v.15, no.6, 2015 , pp. 1547-1558 More about this Journal
Abstract
A predictive functional control (PFC) scheme for permanent magnet synchronous motor (PMSM) servo systems is proposed in this paper. The PFC-based method is first introduced in the control design of speed loop. Since the accuracy of the PFC model is influenced by external disturbances and speed detection quantization errors of the low distinguishability optical encoder in servo systems, it is noted that the standard PFC method does not achieve satisfactory results in the presence of strong disturbances. This paper adopted the Kalman filter to observe the load torque, the rotor position and the rotor angular velocity under the condition of a limited precision encoder. The observations are then fed back into PFC model to rebuild it when considering the influence of perturbation. Therefore, an improved PFC method, called the PFC+Kalman filter method, is presented, and a high performance PMSM servo system was achieved. The validity of the proposed controller was tested via experiments. Excellent results were obtained with respect to the speed trajectory tracking, stability, and disturbance rejection.
Keywords
Predictive functional control; Kalman filter; Disturbance observer; Torque compensation; Permanent magnet synchronous motor;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 F. J. Lin, T. S. Lee, and C.-H. Lin, “Robust H∞ controller design with recurrent neural network for linear synchronous motor drive,” IEEE Trans. Ind. Electron., Vol. 50, No. 3, pp. 456-470, Jun. 2003.   DOI
2 J. W. Jung, H. H. Choi, and T.-H. Kim “Fuzzy PD speed controller for permanent magnet synchronous motors,” Journal of Power Electronics, Vol.11, No. 6, pp. 819-823, Nov. 2011.   DOI
3 R. Errouissi, M. Ouhrouche, W. H. Chen, and A. M. Trzynadlowski, “Robust nonlinear predictive controller for permanent-magnet synchronous motors with an optimized cost function,” IEEE Trans. Ind. Electron., Vol. 59, No. 7, pp. 2849-2858, Jul. 2012.   DOI
4 X. D. Li and S. H. Li. “Speed control for a PMSM servo system using model reference adaptive control and an extended state observer,” Journal of Power Electronics, Vol. 14, No. 3, pp. 549-563, May 2014.   DOI
5 C. Line, C. Manzie, and M. C. Good, “Electromechanical brake modeling and control: From PI to MPC,” IEEE Trans. Control Syst. Technol, Vol. 16, No. 3, pp.446-457, May 2008.   DOI
6 S. Chai, L. P. Wang, and E. Rogers, “A cascade MPC control structure for a PMSM with speed ripple minimization,” IEEE Trans. Ind. Electron., Vol. 60, No. 8, pp. 2978-2987, Aug. 2013.   DOI
7 R. Errouissi, M. Ouhrouche, W. H. Chen, and A. M. Trzynadlowski, “Robust cascaded nonlinear predictive control of a PMSM with anti-windup compensator,” IEEE Trans. Ind. Electron., Vol. 59, No. 8, pp. 3078-3088, Aug. 2012.   DOI
8 F. Morel, X. F. ShiLin, J. M. Retif, B. Allard, and C. Buttay, “A comparative study of predictive current control schemes for a permanent magnet synchronous machine drive,” IEEE Trans. Ind. Electron., Vol. 56, No. 7, pp. 2715-2728, Jul. 2009.   DOI
9 F. M. Fayez, “Robust recurrent wavelet interval type-2 fuzzy-neural-network control for DSP-based PMSM servo drive systems,” Journal of Power Electronics, Vol. 13, No. 1, pp. 139-160, Jan. 2013.   DOI
10 J. S. Ko and J. S. Choi, “Maximum torque control of an IPMSM drive using an adaptive learning fuzzy-neural network,” Journal of Power Electronics, Vol. 12, No. 3, pp. 819-823, May 2012.   DOI
11 M. Preindl and E. Schaltz, “Sensorless model predictive direct current control using novel second-order PLL observer for PMSM drive systems,” IEEE Trans. Ind. Electron., Vol. 58, No. 9, pp. 4087-4095, Sep. 2011.   DOI
12 T. Satoh, K. Kaneko, and N. Saito, “Performance improvement of predictive functional control: a disturbance observer approach,” IEEE 37th Annual Conference on Ind. Electronics Society, pp. 669-674, 2011.
13 N. Z. Jin, X. D. Wang, and X. G Wu, “Current sliding mode control with a load sliding mode observer for permanent magnet synchronous machines,” Journal of Power Electronics, Vol. 14, No. 1, pp. 105-114, Jan. 2014.   DOI
14 X. Xiao and C. M. Chen, “Reduction of torque ripple due to demagnetization in PMSM using current compensation,” IEEE Trans. Appl. superconduct., Vol. 20, No. 3, pp. 1068 -1071, Jun. 2010.   DOI
15 Z. D. Zheng and Y. D. Li, “Load torque observer of permanent magnet synchronous motor,” Transactions of China Electrotechnical Society, Vol. 25, No. 2, pp. 30-36, Feb. 2010.
16 N. K. Quang, N. T. Hieu, and Q. P. Ha, “FPGA-based sensorless PMSM speed control using reduced-order extended Kalman filters,” IEEE Trans. Ind. Electron., Vol. 61, No. 12, pp. 6574-6582, Dec. 2014.   DOI
17 M. Preindl and S. Bolognani, "Model predictive direct speed control with finite control set of PMSM drive systems," IEEE Trans. Power. Electron., Vol. 28, No. 2, pp. 1007- 1015, Feb. 2013.   DOI
18 Z. G. Yin, R. F. Zhang, Z. Yanru, and C. Yu, “Speed and flux estimation of permanent magnet synchronous motor for sensorless vector control based on robust extended Kalman filter,” IEEE International Symposium on Ind. Electronics, pp. 748-751, 2012.
19 W. H. Ali, M. Gowda, P. Cofie, and J. Fuller, “Design of a speed controller using extended Kalman filter for PMSM,” IEEE 57th International Midwest Symposium on Circuits and Systems, pp. 1101-1104, 2014.
20 H. X. Liu and S. H. Li. “Speed control for PMSM servo system using predictive functional control and extended state observe,” IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 1171-1183, Feb. 2012.   DOI
21 J. Richalet, “Industrial applications of model based predictive control,” Automatica, Vol. 29, No. 5, pp. 1251-1274, Sep. 1993.   DOI