2016년 6월 영국 그렌펠 타워 화재는 외단열에 의한 수직화재확산으로 인한 대표적인 피해사례이다. 외단열 공법에서 많이 사용되는 유기단열재는 단열성능이 좋은 반면 화재에 취약한 단점이 있다. 알루미늄 복합패널을 외벽 마감재로 사용하는 외단열 공법에서 알루미늄 내부에 사용되는 플라스틱은 수직 화재확산의 원인으로 지목되고 있다. 알루미늄복합패널을 외벽에 고정하기 위해 사용되는 철재 프레임 때문에 외벽과 외벽 마감재 사이에 중공층이 형성된다. 외벽에 화재가 발생하면 가연성외벽의 연소뿐만 아니라 단열재로부터 발생된 화염이 중공층을 통해 수직으로 급격히 확산되어 인명 및 재산피해가 발생할 수 있다. 국내의 경우 국토교통부고시 2015 - 744에 의한 소재단위 성능시험이 수행되고 있으며, 영국에서는 실제 규모의 화재시험으로 외벽의 수직화재확산 시간의 측정이 가능한 BS8414 시험이 시행되고 있다. 본 연구에서는 현행 국내 고시 기준으로 적합한 준불연 소재의 알루미늄복합패널을 대상으로 영국에서 시행되고 있는 실규모 외벽화재시험(BS 8414)을 수행하여 수직화재확산에 대한 거동 관찰과 현재 마감재료의 소재단위 평가의 한계를 확인하고자 하며, 실제 규모의 화재 시험을 통한 외벽화재 화재확산 방지를 위한 시스템 도입 필요성 확인하고자 한다.
본 논문에서는 에너지원에 따른 이동전화기(SCH_W830) 배터리의 소손 패턴을 제시함으로써 소비자분쟁 해결의 자료로 활용하고자 한다. 실험이 진행될 때의 주위 온도는 $22{\pm}2^{\circ}C$, 습도는 40~60 %를 유지함으로써 신뢰성을 확보하였다. 실험에 사용된 이동전화기의 배터리 전압은 양극(+)과 음극 (1)(-) 사이의 전압은 4.19 V이며, 양극(+)과 음극 (2)(-) 사이의 전압은 4.18 V로 측정되었다. 일반화염 인가에 의한 이동 전화기의 난연성 시험은 한국산업규격(KS)을 적용하였으며, 일반화염이 30 sec 동안 외함에 인가되어도 내장된 배터리의 소손은 없는 것으로 확인되었다. 생리 식염수(NaCl, 0.9%)에 이동전화기를 180 sec 침수시킨 결과 배터리 단자 사이에 누설전류에 의한 발열로 탄화 및 용융이 발생한 흔적을 확인할 수 있었다. 전자레인지(MWO)를 이용하여 70 sec 동안 이동전화기를 가열하면 금속홀더, 충전용 커넥터, 안테나 등이 내장된 부분에서 용융 및 변색이 확인되며, 그 밖의 부분은 특이사항이 없는 것을 알 수 있다. 즉, 인가된 에너지원의 종류에 따라 이동전화기 외형의 탄화, 내장된 금속 및 유전체, 배터리 단자대의 손상 및 변형 등이 다르게 발생하지만 전압은 비교적 일정한 특성을 보이는 것으로 보아 연소의 확산 패턴, 금속의 용융 및 변형 부분의 특성을 종합적으로 고려하여 해석하면 소손 원인 판정이 가능하다.
Geopolymer는 시멘트와 비교하여 $CO_2$ 배출량의 감소, 내화성, 낮은 열전도성 등 다양한 장점을 보유하고 있는 eco-friendly 건설재료이다. 그러나 표면에 화염을 가할 경우 geopolymer panel 표면의 열적거동에 대한 연구결과는 많지 않다. 본 연구에서는 내열성 건축자재로서 화염노출시 geopolymer 경화체의 표면특성을 조사하기 위하여 alumina 골재가 사용된 geopolymer 경화체 표면의 화염노출 특성에 대하여 조사하였다. 화염노출시 panel의 외형변형 및 열충격에 의한 크랙은 없었으며, calcite의 잔존량과 aluminosilicate gel의 halo 패턴으로 보아 화염에 의한 탈탄산 및 탈수는 표면에 국한되어 발생했으며, geopolymer 경화체의 내구성은 화염조사 후에도 유지되고 있는 것으로 판단된다. Quartz와 calcite가 감소함에 따라 gehlenite와 calcium silicate가 증가하는 경향을 나타내고 있으며, BFS의 치환량이 많을수록 현저하게 나타난다. 화염노출에 따른 미세구조의 변화는 탈탄산, 결정수의 탈수 등으로 기공의 형성과 발전되는 과정을 거쳐 calcium silicate, gehlenite 등과 같은 새로운 결정상의 형성에 의해 geopolymer panel 표면의 치밀화와 강화기구로 작용하여 내구성이 향상된 것으로 생각된다.
내압 방폭전기기계 기구는 인화성 가스가 존재하는 위험장소에서 사용되어도 인화성 가스의 점화원이 되지 않는 구조로 이루어져야 한다. 또한 전기 스파크를 발생시키는 부품이 점화원이 되어 기계 기구 내부에서 폭발 시 최대 압력에 견디고 내부 화염이 외부로 전파되어 가스나 증기 폭발을 일으키지 않도록 설계되어야 한다. 본 연구에서는 화염 틈새를 통해 외부로 분사되는 연소 생성물의 분사가 외부 가스나 증기를 점화시킬 정도의 온도나 에너지를 가질 수 없도록 하는 MESG(Maximum Experimental Safe Gap)의 중요한 물리적인 메커니즘에 대해 규명하였다. IEC 60079-20-1:2010 기준에 의해 프로판- 아세틸렌-공기로 이루어진 3성분계 혼합가스의 MESG를 실험하여 MESG 값을 측정하고 가스 폭발시의 최대 폭발압력을 측정하였다. 결과로는 아세틸렌 가스 보다는 폭발력이 낮은 프로판 가스의 조성이 MESG 값과 폭발압력에 더욱 큰 변수로 작용함을 알 수 있었다.
In external chemical vapor deposition processes including VAD and OVD the distribution of flame-synthesized silica particles is determined by heat and mass transfer limitations to particle formation. Combustion gas flow velocities are such that the particle diffusion time scale is longer than that of gas flow convection in the zone of particle formation. The consequence of these effects is that the particles formed tend to remain along straight smooth flow stream lines. Silica particles are formed due to oxidation and hydrolysis. In the hydrolysis, the particles are formed in diffuse bands and particle formation thus requires the diffusion of SiCl$\_$4/ toward CH$\_$4//O$\_$2/ combustion zone to react with H$\_$2/O diffusing away from these same zones on the torch face. The conversion kinetics of hydrolysis is fast compared to diffusion and the rate of conversion is thus diffusion-limited. In the language of combustion, the hydrolysis occurs as a Burke-Schumann process. In selected conditions, reaction zone shape and temperature distributions predicted by the Burke-Schumann analysis are introduced and compared with experimental data available. The calculated centerline temperatures inside the reaction zone agree well with the data, but the calculated values outside the reaction zone are a little higher than the data since the analysis does not consider diffusion in the axial direction and mixing of the combustion products with ambient air. The temperatures along the radial direction agree with the data near the centerline, but gradually diverge from the data as the distance is away from the centerline. This is caused by the convection in the radial direction, which is not considered in the analysis. Spatial distribution of silica particles are affected by convection and diffusion, resulting in a Gaussian form in the radial direction.
In this study, we have performed the Cone Calorimeter test in accordance with ISO 5660-1 to check the combustion characteristics of building flooring materials. The fire risk of these materials were evaluated by construction code, KFI criteria and standards of flame retardant performance. When samples exposed to external heat flux, all samples consumed a lot of Oxygen for a long time. So heat release from sample burning continued so long. And also all samples produced so much smoke. Even though a few samples were satisfied with only peak heat release rate criteria, all 8 samples were not satisfied with criteria of peak heat release rate and total heat released together. The results of 5 min total heat released were $15.9MJ/m^2{\sim}5.9MJ/m^2$. It menas the results are more than 2~6 times higher than the criteria. The results of 10 min total heat released were $30.1MJ/m^2{\sim}100.8MJ/m^2$. It means the results are more than 3~12 times higher than the criteria. 6 of 8 samples were not satisfied with Dm.corr.(corrected maximum smoke density) criteria. The building flooring materials which we used for this test ignited very fast and the burning continued so long. It means these samples are susceptible to fire.
건축물의 에너지 절약기준이 강화됨에 따라 단열성능이 우수한 외단열 공법의 적용이 증가 추세에 있으나, 빈번한 화재사고로 외단열 화재확산 방지를 위한 규정이 강화되었다. 따라서, 기존 EPS 외단열 시스템의 단열성능을 확보하면서 화재안전성을 향상하기 위하여 불연성 단열재를 화재확산 방지구조로 적용한 EPS 외단열 시스템의 대형 화재시험을 ISO 13785-2에 의하여 수행하였고, 그 결과, 시간에 따른 시험체의 외형분석에서 EPS 단열재만 사용한 외단열 공법보다 우수한 화재확산 방지효과가 있는 것으로 판단되었고, 온도 및 열류량 측정결과에서도 하단부보다 상단부의 온도 및 열류량이 낮게 측정되어 차열효과가 있는 것으로 판단되었다.
폭발성 가스가 존재하는 위험장소에서 사용하는 전기기기는 폭발성 가스의 점화원이 되지 않도록 설계되어야 한다. 내압방폭 구조의 설계는 전기 스파크를 발생시키는 부품을 가진 용기가 내부에서 가스나 증기의 폭발시 최대 압력에 견디고 내부 화염이 외부 가스나 증기 폭발로 전파되지 않도록 설계되어야 한다. 이 논문은 화염 틈새를 통해 외부로 분사되는 연소 생성물의 분사가 외부 가스나 증기를 점화시킬 정도의 온도나 에너지를 가질 수 없도록 하는 MESG(Maximum Experimental Safe Gap)의 중요한 물리적인 메커니즘에 대해 설명하였다. IEC 60079-20-1:2010 기준에 의해 프로판과 아세틸렌의 MESG를 실험하여 MESG 값을 측정하고 가스폭발시의 최대 폭발압력을 측정하였다. 결과로는 최소 MESG가 측정될 때 가스의 농도는 화학당량 농도보다 높고 폭발압력은 최소 MESG에서 가장 높게 나타났다.
This paper reports on breakup characteristics of fuel droplet which includes metal nanoparticles. In order to develop a new injection system for nanoparticle-coated layers overcoming the conventional flame spray system, fundamental experiments were conducted to examine the interaction between a fuel droplet with nanoparticles and the external energy induced by the laser. In the experiments, this study used nickel nanoparticles whose size was under 100 nm to mix with kerosene as the fuel, and utilized a syringe pump and a metal needle to inject a fuel droplet. In particular, the Nd-YAG laser was adopted to give additional energy to the nanoparticles for evaporation of a fuel droplet containing nanoparticles. When the laser energy as 96 mJ was irradiated during the injection, it was observed that such an explosive evaporation occurred to break up a fuel droplet including nanoparticles, making the rapid increase in the ratio surface area to liquid volume. From this work, we suggest the possibility that the laser energy can be used for rapid evaporation of a fuel droplet.
To grasp a feasibility of back fire control by valve overlap period, back fire limit equivalence ratio was estimated with valve overlap period which has the same supply energy and positive intake pressure as valve overlap period $300^{\circ}\;CA$. As the result, it was shown that the smaller valve overlap period has the higher back fire limit equivalence ratio under valve overlap period $300^{\circ}\;CA$ as well as VOP $0^{\circ}\;CA$. This result means that expansion of back fire equivalence ratio by decreasing valve overlap period was caused by decrease of back flow duration of flame from in-cylinder to intake port than decrease of lower supply energy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.