• Title/Summary/Keyword: Extensional Vibration

Search Result 60, Processing Time 0.031 seconds

Vibration Analysis of Rotating Composite Cantilever Plates (회전하는 복합재 외팔평판의 진동해석)

  • 김성균;유홍희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.407-413
    • /
    • 2001
  • A modeling method for the vibration analysis of rotating composite cantilever plates is presented. Explicit mass and stiffness matrices are derived by considering the coupling effects between extensional motions and the bending motion, To confirm the accuracy of the method presented in this study, numerical results are obtained and compared to those of a commercial program. Numerical results show that the coupling effect among the three motions becomes important for the accurate estimation of natural frequencies as laminates are stacked up unsymmetrically. Also, natural frequencies loci veering, loci crossing, and mode shape variations are observed.

  • PDF

Design of a Valveless Type Piezoelectric Pump for Micro-Fluid Devices

  • Kim, Hyun-Hoo;Oh, Jin-Heon;Yoon, Jae-Hun;Jeong, Eui-Hwan;Lim, Kee-Joe
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.65-68
    • /
    • 2010
  • The operation principle of a traveling wave rotary type ultrasonic motor can be successfully applied to the fluidic transfer mechanism of the micro-pump. This paper proposes an innovative valveless micro-pump type that uses an extensional vibration mode of a traveling wave as a volume transportation means. The proposed pump consists of coaxial cylindrical shells that join the piezoelectric ceramic ring and metal body, respectively. In order to confirm the actuation mechanism of the proposed pump model, a numerical simulation analysis was implemented. In accordance with the variations in the exciting wave mode and pump body dimension, we analyzed the vibration displacement characteristics of the proposed model, determined the optimal design condition, fabricated the prototype pump from the analysis results and evaluated its performance. The maximum flow rate was approximately $595\;{\mu}L/min$ and the highest back pressure was 0.88 kPa at an input voltage of $130\;V_{rms}$. We confirmed that the peristaltic motion of the piezoelectric actuator was effectively applied to the fluid transfer mechanism of the valveless type micro pump throughout this research.

In-Plane Inextensional and Extensional Vibration Analysis of Curved Beams Using DQM (미분구적법(DQM)을 이용한 곡선보의 내평면 비신장 및 신장 진동해석)

  • Kang, Ki-jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.8064-8073
    • /
    • 2015
  • One of the efficient procedures for the solution of partial differential equations is the method of differential quadrature. This method has been applied to a large number of cases to circumvent the difficulties of the complex algorithms of programming for the computer, as well as excessive use of storage due to conditions of complex geometry and loading. In-plane vibrations of curved beams with inextensibility and extensibility of the arch axis are analyzed by the differential quadrature method (DQM). Fundamental frequencies are calculated for the member with various end conditions and opening angles. The results are compared with exact experimental and numerical results by other methods for cases in which they are available. The DQM gives good accuracy even when only a limited number of grid points is used, and new results according to diverse variation are also suggested.

A Study on the Vibration Damping of Multilayer Damping Sheet (다층 제진판의 제진성 연구)

  • Kim, Won-Ho;An, Byeong-Hyeon;Ahn,
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.4
    • /
    • pp.457-464
    • /
    • 1996
  • The vibration damping of various multilayer damping sheet with different constraining layer and viscoelastic layer were investigated by Rheovibron and vibration test. Damping increased as dynamic loss tangent increased. Constrained type damping sheet showed better damping than extensional type damping sheet. Aluminum foil attached asphalt impregnated paper pad showed best damping.

  • PDF

Design and Prototyping of a Novel Type Piezoelectric Micro-pump

  • Oh, Jin-Heon;Lim, Jong-Nam;Lee, Seung-Su;Heo, Jun;Lim, Kee-Joe
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.181-185
    • /
    • 2008
  • Using the extensional vibration mode of PZT ring, a piezopump is successfully made. The PZT ring is polarized with thickness direction. The traveling extensional wave along the circumference of the ring is obtained by dividing two standing waves which are temporally and spatially phase shifted by 90 degrees from each other. The proposed piezopump is consisted of coaxial cylindrical shells that are bonded piezoelectric ceramic ring. The pump takes an unobtrusive operation into the simple displacing mechanism using peristaltic traveling waves without the physical moving parts. The finite elements analysis on the proposed pump model is carried out to verify its operation principle and design by the commercial FEM software. Components of piezopump were made, assembled, and tested to validate the concepts of the proposed pump and confirm the simulation results. The performance of the proposed piezopump is about 580 ${\mu}l/min$ in flow rate with the highest pressure level of 0.85 kPa, when the driving voltage is 150 $V_p$, 57 kHz.

A Study on the Porperties of Piezoelectric Transformer with a Thickness Vibration Mode (두께방향 진동형 압전트랜스포머의 특성에 관한 연구)

  • 남성이;이수호;홍재일;류주현
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.177-181
    • /
    • 1997
  • A new piezoelectreic transformer is proposed as a key device for high power transimssion. The piezoelectric transformer made of lead titanate solid solution creamic is operated with a thickness extensional vibration mode. This transformer can operate at high frequency aver several megahertz with about 90% high efficiency.

  • PDF

Nonlinear vibration of hybrid composite plates on elastic foundations

  • Chen, Wei-Ren;Chen, Chun-Sheng;Yu, Szu-Ying
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.367-383
    • /
    • 2011
  • In this paper, nonlinear partial differential equations of motion for a hybrid composite plate subjected to initial stresses on elastic foundations are established to investigate its nonlinear vibration behavior. Pasternak foundation and Winkler foundations are used to represent the plate-foundation interaction. The initial stress is taken to be a combination of pure bending stress plus an extensional stress in the example problems. The governing equations of motion are reduced to the time-dependent ordinary differential equations by the Galerkin's method. Then, the Runge-Kutta method is used to evaluate the nonlinear vibration frequency and frequency ratio of hybrid composite plates. The nonlinear vibration behavior is affected by foundation stiffness, initial stress, vibration amplitude and the thickness ratio of layer. The effects of various parameters on the nonlinear vibration of hybrid laminated plate are investigated and discussed.

Longitudinal Vibration Mechanism of Grouted PSC Tendon (부착식 PSC 텐던의 종진동 메카니즘)

  • Kim, Byeong Hwa;Jang, Jung Bum;Lee, Hong Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.261-267
    • /
    • 2011
  • This study reveals the longitudinal vibration mechanism of tendon embedded in a prestressed concrete. The extensional and torsional displacements of the strand are coupled, and the applied prestress level of tendon affects not only axial rigidity but also torsional rigidity. Measuring the elastic wave velocity of tendon, the applied prestress level of tendon could be evaluated. This is because the elastic wave velocity is a function of extensional and torsional rigidity. Using the experimental results for the six prsteressed concrete beams with different prestress levels, the longitudinal vibration mechanism and the effect of prestress level have been examined. To estimate the system ridigities of tendon, a system identification algorithm has been newly developed. The estimated system rigidities have been compared with the available results of related previous study.

Non-linear Modelling for the Vibration Analysis of a Rotating Thin Ring (회전하는 얇은 링의 진동해석을 위한 비선형 모델링)

  • 김원석;정진태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.319-324
    • /
    • 2001
  • Free non-linear vibration of a rotating thin ring with a constant speed is analyzed when the ring has both the in-plane and out-of-plane motions. The geometric non-linearity of displacements is considered by adopting the Lagrange strain theory for the circumferential strain. By using Hamilton's principle, the coupled non-linear partial differential equations are derived, which describe the out-of-plane and in-plane bending, extensional and torsional motions. The natural frequencies are calculated from the linearized equations at various rotational speeds. Finally, the computation results from three non-linear models are compared with those from a linear model. Based on the comparison, this study recommends which model is appropriate to describe the non- linear behavior more precisely.

  • PDF

A Study on the Vibration Characteristics of the Composite Sandwich Beams for High-Speed Heddle Frame (고속 헤들 프레임용 복합재료 샌드위치 보의 진동 특성에 관한 연구)

  • 이창섭;오제훈;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.120-125
    • /
    • 2000
  • A heddle frame is the major part of a loom that produces woven cloth by insertion of weft yarns between warp yams. Warp yarns are manipulated by many heddles fixed in a heddle frame. Recently, the up and down speed of heddle frames has been increased much for the increase of productivity, which induces higher inertial stresses and vibrations in the heddle frame. The heddle frame has the rectangular cross-section. For the design of box type beams of rectangular cross-section, extensional stiffness EA, flexural stiffness El, and torsional stiffness GJ as well as the vibration characteristics are important and should be simultaneously considered. Tn this paper, the vibration characteristics of the composite and the composite sandwich beams for high-speed heddle frame were tested by impulse frequency response.

  • PDF